Single Layer Recurrent Neural Network for detection of swarm-like earthquakes in W-Bohemia/Vogtland - the method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F16%3A00462100" target="_blank" >RIV/67985530:_____/16:00462100 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cageo.2016.05.011" target="_blank" >http://dx.doi.org/10.1016/j.cageo.2016.05.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cageo.2016.05.011" target="_blank" >10.1016/j.cageo.2016.05.011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Single Layer Recurrent Neural Network for detection of swarm-like earthquakes in W-Bohemia/Vogtland - the method
Popis výsledku v původním jazyce
In this paper, we present a new method of local event detection of swarm-like earthquakes based on neural networks. The proposed algorithm uses unique neural network architecture. It combines features used in other neural network concepts such as the Real Time Recurrent Network and Nonlinear Auto regressive Neural Network to achieve good performance of detection. We use the recurrence combined with various delays applied to recurrent inputs so the network remembers history of many samples. This method has been tested on data from a local seismic network in West Bohemia with promising results. We found that phases not picked in training data diminish the detection capability of the neural network and proper preparation of training data is therefore fundamental. To train the network we define a parameter called the learning importance weight of events and show that it affects the number of acceptable solutions achieved by many trials of the Back Propagation Through Time algorithm. We also compare the individual training of stations with training all of them simultaneously, and we conclude that results of joint training are better for some stations than training only one station.
Název v anglickém jazyce
Single Layer Recurrent Neural Network for detection of swarm-like earthquakes in W-Bohemia/Vogtland - the method
Popis výsledku anglicky
In this paper, we present a new method of local event detection of swarm-like earthquakes based on neural networks. The proposed algorithm uses unique neural network architecture. It combines features used in other neural network concepts such as the Real Time Recurrent Network and Nonlinear Auto regressive Neural Network to achieve good performance of detection. We use the recurrence combined with various delays applied to recurrent inputs so the network remembers history of many samples. This method has been tested on data from a local seismic network in West Bohemia with promising results. We found that phases not picked in training data diminish the detection capability of the neural network and proper preparation of training data is therefore fundamental. To train the network we define a parameter called the learning importance weight of events and show that it affects the number of acceptable solutions achieved by many trials of the Back Propagation Through Time algorithm. We also compare the individual training of stations with training all of them simultaneously, and we conclude that results of joint training are better for some stations than training only one station.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DC - Seismologie, vulkanologie a struktura Země
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Geosciences
ISSN
0098-3004
e-ISSN
—
Svazek periodika
93
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
138-149
Kód UT WoS článku
000379561600015
EID výsledku v databázi Scopus
2-s2.0-84971672812