Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Variační Bayesovská Filtrace

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F08%3A00313233" target="_blank" >RIV/67985556:_____/08:00313233 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Variational Bayesian Filtering

  • Popis výsledku v původním jazyce

    The use of the Variational Bayes (VB) approximation in Bayesian filtering is studied, both as a means to accelerate marginalized particle filtering, and as a deterministic local (one-step) approximation. The VB method of approximation and its variants are reviewed. These variants provide a range of algorithms that can be used in a principled trade-off between quality of approximation and computational cost. In combination with marginalized particle filtering, they generalize previously published work onvariational filtering, and they extend currently available methods for speeding up stochastic approximations in Bayesian filtering. In particular, the free-form nature of the VB approximation allows optimal selection of moments which summarize the particles. The performance of the various VB filtering schemes is illustrated in the context of a Gaussian model with a nonlinear sub-state, and a hidden Markov model.

  • Název v anglickém jazyce

    Variational Bayesian Filtering

  • Popis výsledku anglicky

    The use of the Variational Bayes (VB) approximation in Bayesian filtering is studied, both as a means to accelerate marginalized particle filtering, and as a deterministic local (one-step) approximation. The VB method of approximation and its variants are reviewed. These variants provide a range of algorithms that can be used in a principled trade-off between quality of approximation and computational cost. In combination with marginalized particle filtering, they generalize previously published work onvariational filtering, and they extend currently available methods for speeding up stochastic approximations in Bayesian filtering. In particular, the free-form nature of the VB approximation allows optimal selection of moments which summarize the particles. The performance of the various VB filtering schemes is illustrated in the context of a Gaussian model with a nonlinear sub-state, and a hidden Markov model.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BC - Teorie a systémy řízení

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0572" target="_blank" >1M0572: Data, algoritmy, rozhodování</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Signal Processing

  • ISSN

    1053-587X

  • e-ISSN

  • Svazek periodika

    56

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    000259407400003

  • EID výsledku v databázi Scopus