Variační Bayesovská Filtrace
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F08%3A00313233" target="_blank" >RIV/67985556:_____/08:00313233 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Variational Bayesian Filtering
Popis výsledku v původním jazyce
The use of the Variational Bayes (VB) approximation in Bayesian filtering is studied, both as a means to accelerate marginalized particle filtering, and as a deterministic local (one-step) approximation. The VB method of approximation and its variants are reviewed. These variants provide a range of algorithms that can be used in a principled trade-off between quality of approximation and computational cost. In combination with marginalized particle filtering, they generalize previously published work onvariational filtering, and they extend currently available methods for speeding up stochastic approximations in Bayesian filtering. In particular, the free-form nature of the VB approximation allows optimal selection of moments which summarize the particles. The performance of the various VB filtering schemes is illustrated in the context of a Gaussian model with a nonlinear sub-state, and a hidden Markov model.
Název v anglickém jazyce
Variational Bayesian Filtering
Popis výsledku anglicky
The use of the Variational Bayes (VB) approximation in Bayesian filtering is studied, both as a means to accelerate marginalized particle filtering, and as a deterministic local (one-step) approximation. The VB method of approximation and its variants are reviewed. These variants provide a range of algorithms that can be used in a principled trade-off between quality of approximation and computational cost. In combination with marginalized particle filtering, they generalize previously published work onvariational filtering, and they extend currently available methods for speeding up stochastic approximations in Bayesian filtering. In particular, the free-form nature of the VB approximation allows optimal selection of moments which summarize the particles. The performance of the various VB filtering schemes is illustrated in the context of a Gaussian model with a nonlinear sub-state, and a hidden Markov model.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0572" target="_blank" >1M0572: Data, algoritmy, rozhodování</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Signal Processing
ISSN
1053-587X
e-ISSN
—
Svazek periodika
56
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000259407400003
EID výsledku v databázi Scopus
—