Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Empirická aplikace dvoufaktorového modelu stochastické volatility

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F08%3A00314932" target="_blank" >RIV/67985556:_____/08:00314932 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/49777513:23510/08:00500622

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An Empirical Application of a Two-Factor Model of Stochastic Volatility

  • Popis výsledku v původním jazyce

    This contribution focuses on the modelling of volatility of returns in Czech and US stock markets using a two-factor stochastic volatility model, i.e. the volatility process is modeled as a superposition of two autoregressive processes. As the volatilityis not observable, the logarithm of the daily range is employed as the proxy. The estimation of parameters and volatility extraction are performed using the Kalman filter. We have obtained a meaningful decomposition of the volatility process into one highly persistent factor and another quickly mean-reverting factor. Moreover, we have shown that although the overall level of the volatility of returns is roughly the same in both markets, the US market exhibits substantially lower volatility of the volatility process.

  • Název v anglickém jazyce

    An Empirical Application of a Two-Factor Model of Stochastic Volatility

  • Popis výsledku anglicky

    This contribution focuses on the modelling of volatility of returns in Czech and US stock markets using a two-factor stochastic volatility model, i.e. the volatility process is modeled as a superposition of two autoregressive processes. As the volatilityis not observable, the logarithm of the daily range is employed as the proxy. The estimation of parameters and volatility extraction are performed using the Kalman filter. We have obtained a meaningful decomposition of the volatility process into one highly persistent factor and another quickly mean-reverting factor. Moreover, we have shown that although the overall level of the volatility of returns is roughly the same in both markets, the US market exhibits substantially lower volatility of the volatility process.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    AH - Ekonomie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Prague Economic Papers

  • ISSN

    1210-0455

  • e-ISSN

  • Svazek periodika

    17

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus