Knowledge Elicitation Via Extension of Fragmental Knowledge Pieces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F09%3A00328657" target="_blank" >RIV/67985556:_____/09:00328657 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Knowledge Elicitation Via Extension of Fragmental Knowledge Pieces
Popis výsledku v původním jazyce
The paper describes an advanced methodology of automatic knowledge elicitation. It merges fragmental uncertain knowledge pieces into the prior distribution of unknown parameter of a probabilistic model of a dynamic system. Careful knowledge elicitation helps in achieving as bump-less start of model-based controllers as possible. It is also important when observed data are poorly informative, which is a typical situation in closed control loops. Rigorous use of the Bayesian paradigm to the knowledge elicitation forms the essence of the methodology. Unlike former solutions, it can handle fragmental and incompletely compatible knowledge pieces in a systematic way. The description of the methodology dominates the paper and just an illustrative example is presented.
Název v anglickém jazyce
Knowledge Elicitation Via Extension of Fragmental Knowledge Pieces
Popis výsledku anglicky
The paper describes an advanced methodology of automatic knowledge elicitation. It merges fragmental uncertain knowledge pieces into the prior distribution of unknown parameter of a probabilistic model of a dynamic system. Careful knowledge elicitation helps in achieving as bump-less start of model-based controllers as possible. It is also important when observed data are poorly informative, which is a typical situation in closed control loops. Rigorous use of the Bayesian paradigm to the knowledge elicitation forms the essence of the methodology. Unlike former solutions, it can handle fragmental and incompletely compatible knowledge pieces in a systematic way. The description of the methodology dominates the paper and just an illustrative example is presented.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F08%2F0567" target="_blank" >GA102/08/0567: Plně pravděpodobnostní návrh dynamických rozhodovacích strategií</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the European Control Conference 2009
ISBN
978-963-311-369-1
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
European Union Control Association
Místo vydání
Budapest
Místo konání akce
Budapest
Datum konání akce
23. 8. 2009
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—