On open questions in the geometric approach to structural learning Bayesian nets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F11%3A00358907" target="_blank" >RIV/67985556:_____/11:00358907 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ijar.2010.09.004" target="_blank" >http://dx.doi.org/10.1016/j.ijar.2010.09.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijar.2010.09.004" target="_blank" >10.1016/j.ijar.2010.09.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On open questions in the geometric approach to structural learning Bayesian nets
Popis výsledku v původním jazyce
The basic idea of an algebraic approach to learning a Bayesian network (BN) structure is to represent it by a certain uniquely determined vector, called the standard imset. In a recent paper, it was shown that the set of standard imsets is the set of vertices of a certain polytope and natural geometric neighborhood for standard imsets, and, consequently, for BN structures, was introduced. The new geometric view led to a series of open mathematical questions. In this paper, we try to answer some of them.First, we introduce a class of necessary linear constraints on standard imsets and formulate a conjecture that these constraints characterize the polytope. The conjecture has been confirmed in the case of (at most) 4 variables. Second, we confirm a former hypothesis by Raymond Hemmecke that the only lattice points within the polytope are standard imsets. Third, we give a partial analysis of the geometric neighborhood in the case of 4 variables.
Název v anglickém jazyce
On open questions in the geometric approach to structural learning Bayesian nets
Popis výsledku anglicky
The basic idea of an algebraic approach to learning a Bayesian network (BN) structure is to represent it by a certain uniquely determined vector, called the standard imset. In a recent paper, it was shown that the set of standard imsets is the set of vertices of a certain polytope and natural geometric neighborhood for standard imsets, and, consequently, for BN structures, was introduced. The new geometric view led to a series of open mathematical questions. In this paper, we try to answer some of them.First, we introduce a class of necessary linear constraints on standard imsets and formulate a conjecture that these constraints characterize the polytope. The conjecture has been confirmed in the case of (at most) 4 variables. Second, we confirm a former hypothesis by Raymond Hemmecke that the only lattice points within the polytope are standard imsets. Third, we give a partial analysis of the geometric neighborhood in the case of 4 variables.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Approximate Reasoning
ISSN
0888-613X
e-ISSN
—
Svazek periodika
52
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
627-640
Kód UT WoS článku
000290426100006
EID výsledku v databázi Scopus
—