Stability Analysis and Fast Damped-Gauss-Newton Algorithm for INDSCALTensor Decomposition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F11%3A00363806" target="_blank" >RIV/67985556:_____/11:00363806 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stability Analysis and Fast Damped-Gauss-Newton Algorithm for INDSCALTensor Decomposition
Popis výsledku v původním jazyce
INDSCAL is a special case of the CANDECOMP-PARAFAC (CP) decomposition of three or more-way tensors, where two factor matrices are equal. This paper provides a stability analysis of INDSCAL that is done by deriving the Cram'er-Rao lower bound (CRLB) on variance of an unbiased estimate of the tensor parameters from its noisy observation (the tensor plus a Gaussian random tensor). The existence of the bound reveals necessary conditions for the essential uniqueness of the INDSCAL decomposition. This is compared with previous results on CP. Next, analytical expressions for the inverse of the Hessian matrix, which is needed to compute the CRLB, are used in a damped Gaussian (Levenberg-Marquardt) algorithm, which gives a novel method for INDSCAL having a lower computational complexity.
Název v anglickém jazyce
Stability Analysis and Fast Damped-Gauss-Newton Algorithm for INDSCALTensor Decomposition
Popis výsledku anglicky
INDSCAL is a special case of the CANDECOMP-PARAFAC (CP) decomposition of three or more-way tensors, where two factor matrices are equal. This paper provides a stability analysis of INDSCAL that is done by deriving the Cram'er-Rao lower bound (CRLB) on variance of an unbiased estimate of the tensor parameters from its noisy observation (the tensor plus a Gaussian random tensor). The existence of the bound reveals necessary conditions for the essential uniqueness of the INDSCAL decomposition. This is compared with previous results on CP. Next, analytical expressions for the inverse of the Hessian matrix, which is needed to compute the CRLB, are used in a damped Gaussian (Levenberg-Marquardt) algorithm, which gives a novel method for INDSCAL having a lower computational complexity.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2011 IEEE Statistical Signal Processing Workshop (SSP) Proceedings
ISBN
978-1-4577-0569-4
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
581-584
Název nakladatele
IEEE Signal Processing Society
Místo vydání
Nice
Místo konání akce
Nice
Datum konání akce
28. 6. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—