Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F12%3A00381750" target="_blank" >RIV/67985556:_____/12:00381750 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities

  • Popis výsledku v původním jazyce

    Integral functionals based on convex normal integrands are minimized subject to finitely many moment constraints. The integrands are finite on the positive and infinite on the negative numbers, strictly convex but not necessarily differentiable. The minimization is viewed as a primal problem and studied together with a dual one in the framework of convex duality. The effective domain of the value function is described by a conic core, a modification of the earlier concept of convex core. Minimizers andgeneralized minimizers are explicitly constructed from solutions of modified dual problems, not assuming the primal constraint qualification. A-generalized Pythagorean identity is presented using Bregman distance and a correction term for lack of essential smoothness in integrands. Results are applied to minimization of Bregman distances. Existence of a generalized dual solution is established whenever the dual value is finite, assuming the dual constraint qualification. Examples of "irr

  • Název v anglickém jazyce

    Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities

  • Popis výsledku anglicky

    Integral functionals based on convex normal integrands are minimized subject to finitely many moment constraints. The integrands are finite on the positive and infinite on the negative numbers, strictly convex but not necessarily differentiable. The minimization is viewed as a primal problem and studied together with a dual one in the framework of convex duality. The effective domain of the value function is described by a conic core, a modification of the earlier concept of convex core. Minimizers andgeneralized minimizers are explicitly constructed from solutions of modified dual problems, not assuming the primal constraint qualification. A-generalized Pythagorean identity is presented using Bregman distance and a correction term for lack of essential smoothness in integrands. Results are applied to minimization of Bregman distances. Existence of a generalized dual solution is established whenever the dual value is finite, assuming the dual constraint qualification. Examples of "irr

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Kybernetika

  • ISSN

    0023-5954

  • e-ISSN

  • Svazek periodika

    48

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    53

  • Strana od-do

    637-689

  • Kód UT WoS článku

    000310190200004

  • EID výsledku v databázi Scopus