Thin and heavy tails in stochastic programming
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F15%3A00447994" target="_blank" >RIV/67985556:_____/15:00447994 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.14736/kyb-2015-3-0433" target="_blank" >http://dx.doi.org/10.14736/kyb-2015-3-0433</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14736/kyb-2015-3-0433" target="_blank" >10.14736/kyb-2015-3-0433</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thin and heavy tails in stochastic programming
Popis výsledku v původním jazyce
Optimization problems depending on a probability measure correspond to many applications. These problems can be static (single-stage), dynamic with finite (multi-stage) or infinite horizon, single- or multi-objective. It is necessary to have complete knowledge of the underlying probability measure if we are to solve the above-mentioned problems with precision. However this assumption is very rarely fulfilled (in applications) and consequently, problems have to be solved mostly on the basis of data. Stochastic estimates of an optimal value and an optimal solution can only be obtained using this approach. Properties of these estimates have been investigated many times. In this paper we intend to study one-stage problems under unusual (corresponding to reality, however) assumptions. In particular, we try to compare the achieved results under the assumptions of thin and heavy tails in the case of problems with linear and nonlinear dependence on the probability measure, problems with probab
Název v anglickém jazyce
Thin and heavy tails in stochastic programming
Popis výsledku anglicky
Optimization problems depending on a probability measure correspond to many applications. These problems can be static (single-stage), dynamic with finite (multi-stage) or infinite horizon, single- or multi-objective. It is necessary to have complete knowledge of the underlying probability measure if we are to solve the above-mentioned problems with precision. However this assumption is very rarely fulfilled (in applications) and consequently, problems have to be solved mostly on the basis of data. Stochastic estimates of an optimal value and an optimal solution can only be obtained using this approach. Properties of these estimates have been investigated many times. In this paper we intend to study one-stage problems under unusual (corresponding to reality, however) assumptions. In particular, we try to compare the achieved results under the assumptions of thin and heavy tails in the case of problems with linear and nonlinear dependence on the probability measure, problems with probab
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-14445S" target="_blank" >GA13-14445S: Nové trendy ve stochastických ekonomických modelech za neurčitosti</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Kybernetika
ISSN
0023-5954
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
24
Strana od-do
433-456
Kód UT WoS článku
000361266300005
EID výsledku v databázi Scopus
2-s2.0-84940041736