Rank-one tensor injection: A novel method for canonical polyadic tensor decomposition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00458487" target="_blank" >RIV/67985556:_____/16:00458487 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rank-one tensor injection: A novel method for canonical polyadic tensor decomposition
Popis výsledku v původním jazyce
Canonical polyadic decomposition of tensor is to approximate or express the tensor by sum of rank-1 tensors. When all or almost all components of factor matrices of the tensor are highly collinear, the decomposition becomes difficult. Algorithms, e.g., the alternating algorithms, require plenty of iterations, andmay get stuck in false localminima. This paper proposes a novel method for such decompositions. The method injects one or a few rank-1 tensors into the data tensor in order to control the decompositions of the rank-expanded data, while still preserving the estimation accuracy of the original tensor. To achieve this, we develop a method to automatically generate the injected tensor which satisfies a specific estimation accuracy such that this tensor should not dominate rank- 1 tensors of the data tensor, but is still able to be retrieved with a sufficient accuracy. Simulations on tensors with highly collinear factor matrices will illustrate efficiency of the proposed injecting method.
Název v anglickém jazyce
Rank-one tensor injection: A novel method for canonical polyadic tensor decomposition
Popis výsledku anglicky
Canonical polyadic decomposition of tensor is to approximate or express the tensor by sum of rank-1 tensors. When all or almost all components of factor matrices of the tensor are highly collinear, the decomposition becomes difficult. Algorithms, e.g., the alternating algorithms, require plenty of iterations, andmay get stuck in false localminima. This paper proposes a novel method for such decompositions. The method injects one or a few rank-1 tensors into the data tensor in order to control the decompositions of the rank-expanded data, while still preserving the estimation accuracy of the original tensor. To achieve this, we develop a method to automatically generate the injected tensor which satisfies a specific estimation accuracy such that this tensor should not dominate rank- 1 tensors of the data tensor, but is still able to be retrieved with a sufficient accuracy. Simulations on tensors with highly collinear factor matrices will illustrate efficiency of the proposed injecting method.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-13713S" target="_blank" >GA14-13713S: Metody dekompozice tenzorů a jejich aplikace</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Proocessing
ISBN
978-1-4799-9987-3
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
2549-2553
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Shanghai
Datum konání akce
20. 3. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—