Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Canonical polyadic tensor decomposition with low-rank factor matrices

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00542514" target="_blank" >RIV/67985556:_____/21:00542514 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/ICASSP39728.2021.9414606" target="_blank" >http://dx.doi.org/10.1109/ICASSP39728.2021.9414606</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP39728.2021.9414606" target="_blank" >10.1109/ICASSP39728.2021.9414606</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Canonical polyadic tensor decomposition with low-rank factor matrices

  • Popis výsledku v původním jazyce

    This paper proposes a constrained canonical polyadic (CP) tensor decomposition method with low-rank factor matrices. In this way, we allow the CP decomposition with high rank while keeping the number of the model parameters small. First, we propose an algorithm to decompose the tensors into factor matrices of given ranks. Second, we propose an algorithm which can determine the ranks of the factor matrices automatically, such that the fitting error is bounded by a user- selected constant. The algorithms are verified on the decomposition of a tensor of the MNIST hand-written image dataset.

  • Název v anglickém jazyce

    Canonical polyadic tensor decomposition with low-rank factor matrices

  • Popis výsledku anglicky

    This paper proposes a constrained canonical polyadic (CP) tensor decomposition method with low-rank factor matrices. In this way, we allow the CP decomposition with high rank while keeping the number of the model parameters small. First, we propose an algorithm to decompose the tensors into factor matrices of given ranks. Second, we propose an algorithm which can determine the ranks of the factor matrices automatically, such that the fitting error is bounded by a user- selected constant. The algorithms are verified on the decomposition of a tensor of the MNIST hand-written image dataset.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

  • ISBN

    978-1-7281-7605-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    4690-4694

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Toronto

  • Datum konání akce

    6. 6. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku