Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Numerical problems with the Pascal triangle in moment computation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00459096" target="_blank" >RIV/67985556:_____/16:00459096 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.cam.2016.03.033" target="_blank" >http://dx.doi.org/10.1016/j.cam.2016.03.033</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cam.2016.03.033" target="_blank" >10.1016/j.cam.2016.03.033</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Numerical problems with the Pascal triangle in moment computation

  • Popis výsledku v původním jazyce

    Moments are important characteristics of digital signals and images and are commonly used for their description and classification. When calculating the moments and their derived functions numerically, we face, among other numerical problems studied in the literature, certain instabilities which are connected with the properties of Pascal triangle. The Pascal triangle appears in moment computation in various forms whenever we have to deal with binomial powers. In this paper, we investigate the reasons for these instabilities in three particular cases—central moments, complex moments, and moment blur invariants. While in the first two cases this phenomenon is tolerable, in the third one it causes serious numerical problems. We analyze these problems and show that they can be partially overcome by choosing an appropriate polynomial basis.

  • Název v anglickém jazyce

    Numerical problems with the Pascal triangle in moment computation

  • Popis výsledku anglicky

    Moments are important characteristics of digital signals and images and are commonly used for their description and classification. When calculating the moments and their derived functions numerically, we face, among other numerical problems studied in the literature, certain instabilities which are connected with the properties of Pascal triangle. The Pascal triangle appears in moment computation in various forms whenever we have to deal with binomial powers. In this paper, we investigate the reasons for these instabilities in three particular cases—central moments, complex moments, and moment blur invariants. While in the first two cases this phenomenon is tolerable, in the third one it causes serious numerical problems. We analyze these problems and show that they can be partially overcome by choosing an appropriate polynomial basis.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-16928S" target="_blank" >GA15-16928S: Invarianty a adaptivní reprezentace digitálních obrazů</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Computational and Applied Mathematics

  • ISSN

    0377-0427

  • e-ISSN

  • Svazek periodika

    306

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

    53-68

  • Kód UT WoS článku

    000378459500004

  • EID výsledku v databázi Scopus

    2-s2.0-84964632518