Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Partitioned Alternating Least Squares Technique for Canonical Polyadic Tensor Decomposition

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00460710" target="_blank" >RIV/67985556:_____/16:00460710 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/LSP.2016.2577383" target="_blank" >http://dx.doi.org/10.1109/LSP.2016.2577383</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/LSP.2016.2577383" target="_blank" >10.1109/LSP.2016.2577383</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Partitioned Alternating Least Squares Technique for Canonical Polyadic Tensor Decomposition

  • Popis výsledku v původním jazyce

    Canonical polyadic decomposition (CPD), also known as parallel factor analysis, is a representation of a given tensor as a sum of rank-one components. Traditional method for accomplishing CPD is the alternating least squares (ALS) algorithm. Convergence of ALS is known to be slow, especially when some factor matrices of the tensor contain nearly collinear columns. We propose a novel variant of this technique, in which the factor matrices are partitioned into blocks, and each iteration jointly updates blocks of different factor matrices. Each partial optimization is quadratic and can be done in closed form. The algorithm alternates between different random partitionings of the matrices. As a result, a faster convergence is achieved. Another improvement can be obtained when the method is combined with the enhanced line search of Rajih et al. Complexity per iteration is between those of the ALS and the Levenberg–Marquardt (damped Gauss–Newton) method.

  • Název v anglickém jazyce

    Partitioned Alternating Least Squares Technique for Canonical Polyadic Tensor Decomposition

  • Popis výsledku anglicky

    Canonical polyadic decomposition (CPD), also known as parallel factor analysis, is a representation of a given tensor as a sum of rank-one components. Traditional method for accomplishing CPD is the alternating least squares (ALS) algorithm. Convergence of ALS is known to be slow, especially when some factor matrices of the tensor contain nearly collinear columns. We propose a novel variant of this technique, in which the factor matrices are partitioned into blocks, and each iteration jointly updates blocks of different factor matrices. Each partial optimization is quadratic and can be done in closed form. The algorithm alternates between different random partitionings of the matrices. As a result, a faster convergence is achieved. Another improvement can be obtained when the method is combined with the enhanced line search of Rajih et al. Complexity per iteration is between those of the ALS and the Levenberg–Marquardt (damped Gauss–Newton) method.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA14-13713S" target="_blank" >GA14-13713S: Metody dekompozice tenzorů a jejich aplikace</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Signal Processing Letters

  • ISSN

    1070-9908

  • e-ISSN

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    5

  • Strana od-do

    993-997

  • Kód UT WoS článku

    000379694800005

  • EID výsledku v databázi Scopus

    2-s2.0-84978100769