Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Error Preserving Correction: A Method for CP Decomposition at a Target Error Bound

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00500107" target="_blank" >RIV/67985556:_____/19:00500107 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/8579207" target="_blank" >https://ieeexplore.ieee.org/document/8579207</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TSP.2018.2887192" target="_blank" >10.1109/TSP.2018.2887192</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Error Preserving Correction: A Method for CP Decomposition at a Target Error Bound

  • Popis výsledku v původním jazyce

    In CANDECOMP/PARAFAC tensor decomposition, degeneracy often occurs in some difficult scenarios, especially, when the rank exceeds the tensor dimension, or when the loading components are highly collinear in several or all modes, or when CPD does not have an optimal solution. In such cases, norms of some rank-1 tensors become significantly large and cancel each other. This makes algorithms getting stuck in local minima while running a huge number of iterations does not improve the decomposition. In this paper, we propose an error preservation correction method to deal with such problem. Our aim is to seek an alternative tensor, which preserves the approximation error, but norms of rank-1 tensor components of the new tensor are minimized. Alternating and all-at-once correction algorithms have been developed for the problem. In addition, we propose a novel CPD with a bound constraint on the norm of the rank-one tensors. The method can be useful for decomposing tensors that cannot be performed by traditional algorithms. Finally, we demonstrate an application of the proposed method in image denoising and decomposition of the weight tensors in convolutional neural networks.

  • Název v anglickém jazyce

    Error Preserving Correction: A Method for CP Decomposition at a Target Error Bound

  • Popis výsledku anglicky

    In CANDECOMP/PARAFAC tensor decomposition, degeneracy often occurs in some difficult scenarios, especially, when the rank exceeds the tensor dimension, or when the loading components are highly collinear in several or all modes, or when CPD does not have an optimal solution. In such cases, norms of some rank-1 tensors become significantly large and cancel each other. This makes algorithms getting stuck in local minima while running a huge number of iterations does not improve the decomposition. In this paper, we propose an error preservation correction method to deal with such problem. Our aim is to seek an alternative tensor, which preserves the approximation error, but norms of rank-1 tensor components of the new tensor are minimized. Alternating and all-at-once correction algorithms have been developed for the problem. In addition, we propose a novel CPD with a bound constraint on the norm of the rank-one tensors. The method can be useful for decomposing tensors that cannot be performed by traditional algorithms. Finally, we demonstrate an application of the proposed method in image denoising and decomposition of the weight tensors in convolutional neural networks.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-00902S" target="_blank" >GA17-00902S: Pokročilé metody slepé separace podprostorů</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Signal Processing

  • ISSN

    1053-587X

  • e-ISSN

  • Svazek periodika

    67

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    1175-1190

  • Kód UT WoS článku

    000455721400005

  • EID výsledku v databázi Scopus

    2-s2.0-85058883993