Semi-definite relaxations for optimal control problems with oscillation and concentration effects
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00470207" target="_blank" >RIV/67985556:_____/17:00470207 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21110/17:00304724 RIV/68407700:21230/17:00304724
Výsledek na webu
<a href="http://dx.doi.org/10.1051/cocv/2015041" target="_blank" >http://dx.doi.org/10.1051/cocv/2015041</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/cocv/2015041" target="_blank" >10.1051/cocv/2015041</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semi-definite relaxations for optimal control problems with oscillation and concentration effects
Popis výsledku v původním jazyce
Converging hierarchies of finite-dimensional semi-definite relaxations have been proposednfor state-constrained optimal control problems featuring oscillation phenomena, by relaxing controls as Young measures. These semi-definite relaxations were later on extended to optimal control problems depending linearly on the control input and typically featuring concentration phenomena, interpreting the control as a measure of time with a discrete singular component modeling discontinuities or jumps of the state trajectories. In this contribution, we use measures introduced originally by DiPerna and Majda in the partial differential equations literature to model simultaneously, and in a unified framework, possible oscillation and concentration effects of the optimal control policy. We show that hierarchies of semi-definite relaxations can also be constructed to deal numerically with nonconvex optimal control problems with polynomial vector field and semialgebraic state constraints
Název v anglickém jazyce
Semi-definite relaxations for optimal control problems with oscillation and concentration effects
Popis výsledku anglicky
Converging hierarchies of finite-dimensional semi-definite relaxations have been proposednfor state-constrained optimal control problems featuring oscillation phenomena, by relaxing controls as Young measures. These semi-definite relaxations were later on extended to optimal control problems depending linearly on the control input and typically featuring concentration phenomena, interpreting the control as a measure of time with a discrete singular component modeling discontinuities or jumps of the state trajectories. In this contribution, we use measures introduced originally by DiPerna and Majda in the partial differential equations literature to model simultaneously, and in a unified framework, possible oscillation and concentration effects of the optimal control policy. We show that hierarchies of semi-definite relaxations can also be constructed to deal numerically with nonconvex optimal control problems with polynomial vector field and semialgebraic state constraints
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ESAIM-Control Optimisation and Calculus of Variations
ISSN
1292-8119
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
23
Strana od-do
95-117
Kód UT WoS článku
000391312400005
EID výsledku v databázi Scopus
2-s2.0-85007011714