Fractal approach towards power-law coherency to measure cross-correlations between time series
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00473066" target="_blank" >RIV/67985556:_____/17:00473066 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cnsns.2017.02.018" target="_blank" >http://dx.doi.org/10.1016/j.cnsns.2017.02.018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cnsns.2017.02.018" target="_blank" >10.1016/j.cnsns.2017.02.018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fractal approach towards power-law coherency to measure cross-correlations between time series
Popis výsledku v původním jazyce
We focus on power-law coherency as an alternative approach towards studying power law cross-correlations between simultaneously recorded time series. To be able to study empirical data, we introduce three estimators of the power-law coherency parameter Hp based on popular techniques usually utilized for studying power-law cross-correlations detrended cross-correlation analysis (DCCA), detrending moving-average cross-correlation analysis (DMCA) and height cross-correlation analysis (HXA). In the finite sample properties study, we focus on the bias, variance and mean squared error of the estimators. We find that the DMCA-based method is the safest choice among the three. The HXA method is reasonable for long time series with at least 104 observations, which can be easily attainable in some disciplines but problematic in others. The DCCA-based method does not provide favorable properties which even deteriorate with an increasing time series length. The paper opens a new venue towards studying cross-correlations between time series.
Název v anglickém jazyce
Fractal approach towards power-law coherency to measure cross-correlations between time series
Popis výsledku anglicky
We focus on power-law coherency as an alternative approach towards studying power law cross-correlations between simultaneously recorded time series. To be able to study empirical data, we introduce three estimators of the power-law coherency parameter Hp based on popular techniques usually utilized for studying power-law cross-correlations detrended cross-correlation analysis (DCCA), detrending moving-average cross-correlation analysis (DMCA) and height cross-correlation analysis (HXA). In the finite sample properties study, we focus on the bias, variance and mean squared error of the estimators. We find that the DMCA-based method is the safest choice among the three. The HXA method is reasonable for long time series with at least 104 observations, which can be easily attainable in some disciplines but problematic in others. The DCCA-based method does not provide favorable properties which even deteriorate with an increasing time series length. The paper opens a new venue towards studying cross-correlations between time series.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
<a href="/cs/project/GP14-11402P" target="_blank" >GP14-11402P: Analýza dvoudimenzionální dlouhé paměti ve finančních časových řadách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Communications in Nonlinear Science and Numerical Simulation
ISSN
1007-5704
e-ISSN
—
Svazek periodika
50
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
193-200
Kód UT WoS článku
000399513200015
EID výsledku v databázi Scopus
2-s2.0-85014923760