On the Modelling and Forecasting of Multivariate Realized Volatility: Generalized Heterogeneous Autoregressive (GHAR) Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00478479" target="_blank" >RIV/67985556:_____/17:00478479 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11230/17:10326547
Výsledek na webu
<a href="http://dx.doi.org/10.1002/for.2423" target="_blank" >http://dx.doi.org/10.1002/for.2423</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/for.2423" target="_blank" >10.1002/for.2423</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Modelling and Forecasting of Multivariate Realized Volatility: Generalized Heterogeneous Autoregressive (GHAR) Model
Popis výsledku v původním jazyce
Recent multivariate extensions of the popular heterogeneous autoregressive model (HAR) for realized volatility leave substantial information unmodelled in residuals. We propose to employ a system of seemingly unrelated regressions to model and forecast a realized covariance matrix to capture this information. We find that the newly proposed gener- alized heterogeneous autoregressive (GHAR) model outperforms competing approaches in terms of economic gains, providing better mean–variance trade-off, while, in terms of statistical precision, GHAR is not substantially dominated by any other model. Our results provide a comprehensive comparison of the performance when realized covariance, subsampled realized covariance and multivariate realized kernel estimators are used. We study the contribution of the estimators across different sampling frequencies, and show that the multivariate realized kernel and subsampled real- ized covariance estimators deliver further gains compared to realized covariance estimated on a 5-minute frequency. In order to show economic and statistical gains, a portfolio of various sizes is used.
Název v anglickém jazyce
On the Modelling and Forecasting of Multivariate Realized Volatility: Generalized Heterogeneous Autoregressive (GHAR) Model
Popis výsledku anglicky
Recent multivariate extensions of the popular heterogeneous autoregressive model (HAR) for realized volatility leave substantial information unmodelled in residuals. We propose to employ a system of seemingly unrelated regressions to model and forecast a realized covariance matrix to capture this information. We find that the newly proposed gener- alized heterogeneous autoregressive (GHAR) model outperforms competing approaches in terms of economic gains, providing better mean–variance trade-off, while, in terms of statistical precision, GHAR is not substantially dominated by any other model. Our results provide a comprehensive comparison of the performance when realized covariance, subsampled realized covariance and multivariate realized kernel estimators are used. We study the contribution of the estimators across different sampling frequencies, and show that the multivariate realized kernel and subsampled real- ized covariance estimators deliver further gains compared to realized covariance estimated on a 5-minute frequency. In order to show economic and statistical gains, a portfolio of various sizes is used.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-32263S" target="_blank" >GA13-32263S: Vícerozměrná spektrální analýza finančních trhů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Forecasting
ISSN
0277-6693
e-ISSN
—
Svazek periodika
36
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
181-206
Kód UT WoS článku
000394909900006
EID výsledku v databázi Scopus
2-s2.0-84966539553