Stability, Empirical Estimates and Scenario Generation in Stochastic Optimization - Applications in Finance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00485151" target="_blank" >RIV/67985556:_____/17:00485151 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.14736/kyb-2017-6-1026" target="_blank" >http://dx.doi.org/10.14736/kyb-2017-6-1026</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14736/kyb-2017-6-1026" target="_blank" >10.14736/kyb-2017-6-1026</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stability, Empirical Estimates and Scenario Generation in Stochastic Optimization - Applications in Finance
Popis výsledku v původním jazyce
Economic and financial processes are mostly simultaneously influuenced by a random factor and a decision parameter. While the random factor can be hardly influenced, the decision parameter can be usually determined by a deterministic optimization problem depending on a corresponding probability measure. However, in applications the „underlying“ probability measure is often a little different, replaced by empirical one determined on the base of data or even (for numerical reason) replaced by simpler (mostly discrete) one. Consequently, real one and approximate one correspond to applications. In the paper we try to investigate their relationship. To this end we employ the results on stability based on the Wasserstein metric and L1 norm, their applications to empirical estimates and scenario generation. Moreover, we apply the achieved new results to simple financial applications. The corresponding model will a problem of stochastic programming.
Název v anglickém jazyce
Stability, Empirical Estimates and Scenario Generation in Stochastic Optimization - Applications in Finance
Popis výsledku anglicky
Economic and financial processes are mostly simultaneously influuenced by a random factor and a decision parameter. While the random factor can be hardly influenced, the decision parameter can be usually determined by a deterministic optimization problem depending on a corresponding probability measure. However, in applications the „underlying“ probability measure is often a little different, replaced by empirical one determined on the base of data or even (for numerical reason) replaced by simpler (mostly discrete) one. Consequently, real one and approximate one correspond to applications. In the paper we try to investigate their relationship. To this end we employ the results on stability based on the Wasserstein metric and L1 norm, their applications to empirical estimates and scenario generation. Moreover, we apply the achieved new results to simple financial applications. The corresponding model will a problem of stochastic programming.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-10331S" target="_blank" >GA15-10331S: Dynamické modely rizika portfolia hypoték</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Kybernetika
ISSN
0023-5954
e-ISSN
—
Svazek periodika
53
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
21
Strana od-do
1026-1046
Kód UT WoS článku
000424732300005
EID výsledku v databázi Scopus
2-s2.0-85040725398