Rigorous results for the Stigler-Luckock model for the evolution of an order book
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00490719" target="_blank" >RIV/67985556:_____/18:00490719 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1214/17-AAP1336" target="_blank" >http://dx.doi.org/10.1214/17-AAP1336</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1214/17-AAP1336" target="_blank" >10.1214/17-AAP1336</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rigorous results for the Stigler-Luckock model for the evolution of an order book
Popis výsledku v původním jazyce
In 1964, G. J. Stigler introduced a stochastic model for the evolution of an order book on a stock market. This model was independently rediscovered and generalized by H. Luckock in 2003. In his formulation, traders place buy and sell limit orders of unit size according to independent Poisson processes with possibly different intensities. Newly arriving buy (sell) orders are either immediately matched to the best available matching sell (buy) order or stay in the order book until a matching order arrives. Assuming stationarity, Luckock showed that the distribution functions of the best buy and sell order in the order book solve a differential equation, from which he was able to calculate the position of two prices Jc−<Jc+ such that buy orders below Jc− and sell orders above Jc+ stay in the order book forever while all other orders are eventually matched. We extend Luckock’s model by adding market orders, that is, with a certain rate traders arrive at the market that take the best available buy or sell offer in the order book, if there is one, and do nothing otherwise. We give necessary and sufficient conditions for such an extended model to be positive recurrent and show how these conditions are related to the prices Jc− and Jc+ of Luckock.
Název v anglickém jazyce
Rigorous results for the Stigler-Luckock model for the evolution of an order book
Popis výsledku anglicky
In 1964, G. J. Stigler introduced a stochastic model for the evolution of an order book on a stock market. This model was independently rediscovered and generalized by H. Luckock in 2003. In his formulation, traders place buy and sell limit orders of unit size according to independent Poisson processes with possibly different intensities. Newly arriving buy (sell) orders are either immediately matched to the best available matching sell (buy) order or stay in the order book until a matching order arrives. Assuming stationarity, Luckock showed that the distribution functions of the best buy and sell order in the order book solve a differential equation, from which he was able to calculate the position of two prices Jc−<Jc+ such that buy orders below Jc− and sell orders above Jc+ stay in the order book forever while all other orders are eventually matched. We extend Luckock’s model by adding market orders, that is, with a certain rate traders arrive at the market that take the best available buy or sell offer in the order book, if there is one, and do nothing otherwise. We give necessary and sufficient conditions for such an extended model to be positive recurrent and show how these conditions are related to the prices Jc− and Jc+ of Luckock.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Applied Probability
ISSN
1050-5164
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
45
Strana od-do
1491-1535
Kód UT WoS článku
000434140900006
EID výsledku v databázi Scopus
2-s2.0-85048045652