Continuous SSB representation of preferences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00491011" target="_blank" >RIV/67985556:_____/18:00491011 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jmateco.2018.06.005" target="_blank" >http://dx.doi.org/10.1016/j.jmateco.2018.06.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmateco.2018.06.005" target="_blank" >10.1016/j.jmateco.2018.06.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Continuous SSB representation of preferences
Popis výsledku v původním jazyce
We propose a topological variant of skew-symmetric bilinear (SSB) representation of preferences. First, semi-Fishburn relations are defined by assuming convexity and coherence, a newly considered topological property. We show that lower and upper semi-Fishburn relations admit the existence of a minimal element and a maximal element, respectively. Then axiom of ‘‘balance’’ is stated and we prove that a binary relation has a continuous SSB representation if and only if it is a balanced (lower and upper semi-)Fishburn relation. The relationship between the above definitions and the original axioms of (algebraic) SSB representation is fully discussed. Finally, by applying this theory to probability measures, we show the existence of a maximal preferred measure for an infinite set of pure outcomes, thus generalizing all available existence theorems of (algebraic) SSB representation. Note that by using this framework to, e.g., finitely additive measures, one may develop a non-probabilistic variant of SSB representation as well.
Název v anglickém jazyce
Continuous SSB representation of preferences
Popis výsledku anglicky
We propose a topological variant of skew-symmetric bilinear (SSB) representation of preferences. First, semi-Fishburn relations are defined by assuming convexity and coherence, a newly considered topological property. We show that lower and upper semi-Fishburn relations admit the existence of a minimal element and a maximal element, respectively. Then axiom of ‘‘balance’’ is stated and we prove that a binary relation has a continuous SSB representation if and only if it is a balanced (lower and upper semi-)Fishburn relation. The relationship between the above definitions and the original axioms of (algebraic) SSB representation is fully discussed. Finally, by applying this theory to probability measures, we show the existence of a maximal preferred measure for an infinite set of pure outcomes, thus generalizing all available existence theorems of (algebraic) SSB representation. Note that by using this framework to, e.g., finitely additive measures, one may develop a non-probabilistic variant of SSB representation as well.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-08182S" target="_blank" >GA17-08182S: Matematické modelování netranzitivních preferencí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Economics
ISSN
0304-4068
e-ISSN
—
Svazek periodika
77
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
59-65
Kód UT WoS článku
000442713800007
EID výsledku v databázi Scopus
2-s2.0-85049434709