Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bayesian approach to collaborative inference in networks of agents

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00493396" target="_blank" >RIV/67985556:_____/18:00493396 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/B978-0-12-813677-5.00004-3" target="_blank" >http://dx.doi.org/10.1016/B978-0-12-813677-5.00004-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/B978-0-12-813677-5.00004-3" target="_blank" >10.1016/B978-0-12-813677-5.00004-3</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bayesian approach to collaborative inference in networks of agents

  • Popis výsledku v původním jazyce

    Bayesian inference has become a standard tool in the modern statistical signal processing theory, particularly due to the probabilistically consistent representation of the available knowledge about the variables of interest, and the amount of the uncertainty contained in this knowledge. Unlike in the 'standard' theory, the underlying inferential principles are generally applicable to virtually any inference task, from linear models to nonlinear, mixture, or hierarchical models. Furthermore, the rapid development of the modern devices with high computational performance finally eliminated the major drawback of the Bayesian theory: the frequent analytical intractability of the posterior distributions. This chapter studies the possible implementation of the Bayesian inference in networks of collaborating agents. In particular, we focus on the diffusion networks, where the agents may share information (measurements and/or estimates) with their adjacent neighbors, and incorporate it into own knowledge about the unknown variables of interest. There are several ways how to perform this incorporation in an optimal way according to a convenient user-selected information criterion, and under certain conditions where the model belongs to the exponential family of distributions and the prior distributions are conjugate, the results are analytically tractable. The celebrated Kalman filter serves as an illustrative example demonstrating the straightforward application of the abstractly described principles to a particular problem. It is reformulated for the collaborative estimation task in networks where both the neighbors' observations and posterior distributions are available to each agent. Naturally, the analyticity of the resulting filter is preserved.

  • Název v anglickém jazyce

    Bayesian approach to collaborative inference in networks of agents

  • Popis výsledku anglicky

    Bayesian inference has become a standard tool in the modern statistical signal processing theory, particularly due to the probabilistically consistent representation of the available knowledge about the variables of interest, and the amount of the uncertainty contained in this knowledge. Unlike in the 'standard' theory, the underlying inferential principles are generally applicable to virtually any inference task, from linear models to nonlinear, mixture, or hierarchical models. Furthermore, the rapid development of the modern devices with high computational performance finally eliminated the major drawback of the Bayesian theory: the frequent analytical intractability of the posterior distributions. This chapter studies the possible implementation of the Bayesian inference in networks of collaborating agents. In particular, we focus on the diffusion networks, where the agents may share information (measurements and/or estimates) with their adjacent neighbors, and incorporate it into own knowledge about the unknown variables of interest. There are several ways how to perform this incorporation in an optimal way according to a convenient user-selected information criterion, and under certain conditions where the model belongs to the exponential family of distributions and the prior distributions are conjugate, the results are analytically tractable. The celebrated Kalman filter serves as an illustrative example demonstrating the straightforward application of the abstractly described principles to a particular problem. It is reformulated for the collaborative estimation task in networks where both the neighbors' observations and posterior distributions are available to each agent. Naturally, the analyticity of the resulting filter is preserved.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-09848S" target="_blank" >GA16-09848S: Racionalita a uvažování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Cooperative and graph signal processing

  • ISBN

    978-0-12-813677-5

  • Počet stran výsledku

    15

  • Strana od-do

    131-145

  • Počet stran knihy

    837

  • Název nakladatele

    Academic Press

  • Místo vydání

    London

  • Kód UT WoS kapitoly