Bayesian approach to collaborative inference in networks of agents
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00493396" target="_blank" >RIV/67985556:_____/18:00493396 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/B978-0-12-813677-5.00004-3" target="_blank" >http://dx.doi.org/10.1016/B978-0-12-813677-5.00004-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/B978-0-12-813677-5.00004-3" target="_blank" >10.1016/B978-0-12-813677-5.00004-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bayesian approach to collaborative inference in networks of agents
Popis výsledku v původním jazyce
Bayesian inference has become a standard tool in the modern statistical signal processing theory, particularly due to the probabilistically consistent representation of the available knowledge about the variables of interest, and the amount of the uncertainty contained in this knowledge. Unlike in the 'standard' theory, the underlying inferential principles are generally applicable to virtually any inference task, from linear models to nonlinear, mixture, or hierarchical models. Furthermore, the rapid development of the modern devices with high computational performance finally eliminated the major drawback of the Bayesian theory: the frequent analytical intractability of the posterior distributions. This chapter studies the possible implementation of the Bayesian inference in networks of collaborating agents. In particular, we focus on the diffusion networks, where the agents may share information (measurements and/or estimates) with their adjacent neighbors, and incorporate it into own knowledge about the unknown variables of interest. There are several ways how to perform this incorporation in an optimal way according to a convenient user-selected information criterion, and under certain conditions where the model belongs to the exponential family of distributions and the prior distributions are conjugate, the results are analytically tractable. The celebrated Kalman filter serves as an illustrative example demonstrating the straightforward application of the abstractly described principles to a particular problem. It is reformulated for the collaborative estimation task in networks where both the neighbors' observations and posterior distributions are available to each agent. Naturally, the analyticity of the resulting filter is preserved.
Název v anglickém jazyce
Bayesian approach to collaborative inference in networks of agents
Popis výsledku anglicky
Bayesian inference has become a standard tool in the modern statistical signal processing theory, particularly due to the probabilistically consistent representation of the available knowledge about the variables of interest, and the amount of the uncertainty contained in this knowledge. Unlike in the 'standard' theory, the underlying inferential principles are generally applicable to virtually any inference task, from linear models to nonlinear, mixture, or hierarchical models. Furthermore, the rapid development of the modern devices with high computational performance finally eliminated the major drawback of the Bayesian theory: the frequent analytical intractability of the posterior distributions. This chapter studies the possible implementation of the Bayesian inference in networks of collaborating agents. In particular, we focus on the diffusion networks, where the agents may share information (measurements and/or estimates) with their adjacent neighbors, and incorporate it into own knowledge about the unknown variables of interest. There are several ways how to perform this incorporation in an optimal way according to a convenient user-selected information criterion, and under certain conditions where the model belongs to the exponential family of distributions and the prior distributions are conjugate, the results are analytically tractable. The celebrated Kalman filter serves as an illustrative example demonstrating the straightforward application of the abstractly described principles to a particular problem. It is reformulated for the collaborative estimation task in networks where both the neighbors' observations and posterior distributions are available to each agent. Naturally, the analyticity of the resulting filter is preserved.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-09848S" target="_blank" >GA16-09848S: Racionalita a uvažování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Cooperative and graph signal processing
ISBN
978-0-12-813677-5
Počet stran výsledku
15
Strana od-do
131-145
Počet stran knihy
837
Název nakladatele
Academic Press
Místo vydání
London
Kód UT WoS kapitoly
—