Vše
Vše

Co hledáte?

Vše
Projekty
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Classes of Matroids Closed Under Minors and Principal Extensions

Popis výsledku

Identifikátory výsledku

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Classes of Matroids Closed Under Minors and Principal Extensions

  • Popis výsledku v původním jazyce

    This work studies the classes of matroids that are closed under minors, addition of coloops and principal extensions. To any matroid M in such a class a matroid M° is constructed such that it contains M as a minor, has all proper minors in the class and violates Zhang- Yeung inequality. When the class enjoys the inequality the matroid M° becomes an excluded minor. An analogous assertion was known before for the linear matroids over any infinite field in connection with Ingleton inequality. The result is applied to the classes of multilinear, algebraic and almost entropic matroids. In particular, the class of almost entropic matroids has infinitely many excluded minors.

  • Název v anglickém jazyce

    Classes of Matroids Closed Under Minors and Principal Extensions

  • Popis výsledku anglicky

    This work studies the classes of matroids that are closed under minors, addition of coloops and principal extensions. To any matroid M in such a class a matroid M° is constructed such that it contains M as a minor, has all proper minors in the class and violates Zhang- Yeung inequality. When the class enjoys the inequality the matroid M° becomes an excluded minor. An analogous assertion was known before for the linear matroids over any infinite field in connection with Ingleton inequality. The result is applied to the classes of multilinear, algebraic and almost entropic matroids. In particular, the class of almost entropic matroids has infinitely many excluded minors.

Klasifikace

  • Druh

    Jimp - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Combinatorica

  • ISSN

    0209-9683

  • e-ISSN

  • Svazek periodika

    38

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    HU - Maďarsko

  • Počet stran výsledku

    20

  • Strana od-do

    935-954

  • Kód UT WoS článku

    000443306900008

  • EID výsledku v databázi Scopus

    2-s2.0-85052592985

Druh výsledku

Jimp - Článek v periodiku v databázi Web of Science

Jimp

OECD FORD

Pure mathematics

Rok uplatnění

2018