How to down-weight observations in robust regression: A metalearning study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00506986" target="_blank" >RIV/67985556:_____/18:00506986 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/18:00493805
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How to down-weight observations in robust regression: A metalearning study
Popis výsledku v původním jazyce
Metalearning is becoming an increasingly important methodology for extracting knowledge from a data base of available training data sets to a new (independent) data set. The concept of metalearning is becoming popular in statistical learning and there is an increasing number of metalearning applications also in the analysis of economic data sets. Still, not much attention has been paid to its limitations and disadvantages. For this purpose, we use various linear regression estimators (including highly robust ones) over a set of 30 data sets with economic background and perform a metalearning study over them as well as over the same data sets after an artificial contamination.
Název v anglickém jazyce
How to down-weight observations in robust regression: A metalearning study
Popis výsledku anglicky
Metalearning is becoming an increasingly important methodology for extracting knowledge from a data base of available training data sets to a new (independent) data set. The concept of metalearning is becoming popular in statistical learning and there is an increasing number of metalearning applications also in the analysis of economic data sets. Still, not much attention has been paid to its limitations and disadvantages. For this purpose, we use various linear regression estimators (including highly robust ones) over a set of 30 data sets with economic background and perform a metalearning study over them as well as over the same data sets after an artificial contamination.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mathematical Methods in Economics 2018. Conference Proceedings
ISBN
978-80-7378-371-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
204-209
Název nakladatele
MatfyzPress
Místo vydání
Prague
Místo konání akce
Jindřichův Hradec
Datum konání akce
12. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000507455300036