On Sensitivity of Metalearning: An Illustrative Study for Robust Regression
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00504176" target="_blank" >RIV/67985807:_____/20:00504176 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-57306-5_24" target="_blank" >http://dx.doi.org/10.1007/978-3-030-57306-5_24</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-57306-5_24" target="_blank" >10.1007/978-3-030-57306-5_24</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Sensitivity of Metalearning: An Illustrative Study for Robust Regression
Popis výsledku v původním jazyce
Metalearning is becoming an increasingly important methodology for extracting knowledge from a data base of available training datasets to a new (independent) dataset. While the concept of metalearning is becoming popular in statistical learning and readily available also for the analysis of economic datasets, not much attention has been paid to its limitations and disadvantages. To the best of our knowledge, the current paper represents a first illustration of metalearning sensitivity to data contamination by noise or outliers. For this purpose, we use various linear regression estimators (including highly robust ones) over a set of 24 datasets with economic background and perform a metalearning study over them as well as over the same datasets after an artificial contamination. The results reveal the whole process to remain rather sensitive to data contamination and some of the standard classifiers turn out to yield unreliable results. Nevertheless, using a robust classification method does not bring a desirable improvement. Thus, we conclude that the task of robustification of the whole metalearning methodology is more complex and deserves a systematic future research.
Název v anglickém jazyce
On Sensitivity of Metalearning: An Illustrative Study for Robust Regression
Popis výsledku anglicky
Metalearning is becoming an increasingly important methodology for extracting knowledge from a data base of available training datasets to a new (independent) dataset. While the concept of metalearning is becoming popular in statistical learning and readily available also for the analysis of economic datasets, not much attention has been paid to its limitations and disadvantages. To the best of our knowledge, the current paper represents a first illustration of metalearning sensitivity to data contamination by noise or outliers. For this purpose, we use various linear regression estimators (including highly robust ones) over a set of 24 datasets with economic background and perform a metalearning study over them as well as over the same datasets after an artificial contamination. The results reveal the whole process to remain rather sensitive to data contamination and some of the standard classifiers turn out to yield unreliable results. Nevertheless, using a robust classification method does not bring a desirable improvement. Thus, we conclude that the task of robustification of the whole metalearning methodology is more complex and deserves a systematic future research.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-05704S" target="_blank" >GA19-05704S: FoNeCo: Analytické základy neurovýpočtů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Nonparametric Statistics. ISNPS 2018 Conference Proceedings
ISBN
978-3-030-57305-8
ISSN
2194-1009
e-ISSN
—
Počet stran výsledku
10
Strana od-do
261-270
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Salerno
Datum konání akce
11. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—