Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Density-Approximating Neural Network Models for Anomaly Detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00507118" target="_blank" >RIV/67985556:_____/18:00507118 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Density-Approximating Neural Network Models for Anomaly Detection

  • Popis výsledku v původním jazyce

    We propose an alternative use of neural models in anomaly detection. Traditionally, in anomaly detection context the common use of neural models is in form of auto-encoders. Through the use of auto-encoders the true anomality is proxied by reconstruction error. Auto-encoders often perform well but do not guarantee to perform as expected in all cases. A popular more direct way of modeling anomality distribution is through k-Nearest Neighbor models. Although kNN can perform better than auto-encoders in some cases, their applicability can be seriously impaired by their space and time complexity especially with high-dimensional large-scale data. The alternative we propose is to model the distribution imposed by kNN using neural networks. We show that such neural models are capable of achieving comparable accuracy to kNN while reducing computational complexity by orders of magnitude. The de-noising e ect of a neural model with limited number of neurons and layers is shown to lead to accuracy improvements in some cases. We evaluate the proposed idea against standard kNN and auto-encoders on a large set of benchmark data and show that in majority of cases it is possible to improve on accuracy or computational cost.

  • Název v anglickém jazyce

    Density-Approximating Neural Network Models for Anomaly Detection

  • Popis výsledku anglicky

    We propose an alternative use of neural models in anomaly detection. Traditionally, in anomaly detection context the common use of neural models is in form of auto-encoders. Through the use of auto-encoders the true anomality is proxied by reconstruction error. Auto-encoders often perform well but do not guarantee to perform as expected in all cases. A popular more direct way of modeling anomality distribution is through k-Nearest Neighbor models. Although kNN can perform better than auto-encoders in some cases, their applicability can be seriously impaired by their space and time complexity especially with high-dimensional large-scale data. The alternative we propose is to model the distribution imposed by kNN using neural networks. We show that such neural models are capable of achieving comparable accuracy to kNN while reducing computational complexity by orders of magnitude. The de-noising e ect of a neural model with limited number of neurons and layers is shown to lead to accuracy improvements in some cases. We evaluate the proposed idea against standard kNN and auto-encoders on a large set of benchmark data and show that in majority of cases it is possible to improve on accuracy or computational cost.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20204 - Robotics and automatic control

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ACM SIGKDD 2018 Workshop

  • ISBN

    978-1-4503-5552-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    1-8

  • Název nakladatele

    ACM

  • Místo vydání

    New York

  • Místo konání akce

    London

  • Datum konání akce

    20. 8. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku