Density-Approximating Neural Network Models for Anomaly Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00507118" target="_blank" >RIV/67985556:_____/18:00507118 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Density-Approximating Neural Network Models for Anomaly Detection
Popis výsledku v původním jazyce
We propose an alternative use of neural models in anomaly detection. Traditionally, in anomaly detection context the common use of neural models is in form of auto-encoders. Through the use of auto-encoders the true anomality is proxied by reconstruction error. Auto-encoders often perform well but do not guarantee to perform as expected in all cases. A popular more direct way of modeling anomality distribution is through k-Nearest Neighbor models. Although kNN can perform better than auto-encoders in some cases, their applicability can be seriously impaired by their space and time complexity especially with high-dimensional large-scale data. The alternative we propose is to model the distribution imposed by kNN using neural networks. We show that such neural models are capable of achieving comparable accuracy to kNN while reducing computational complexity by orders of magnitude. The de-noising e ect of a neural model with limited number of neurons and layers is shown to lead to accuracy improvements in some cases. We evaluate the proposed idea against standard kNN and auto-encoders on a large set of benchmark data and show that in majority of cases it is possible to improve on accuracy or computational cost.
Název v anglickém jazyce
Density-Approximating Neural Network Models for Anomaly Detection
Popis výsledku anglicky
We propose an alternative use of neural models in anomaly detection. Traditionally, in anomaly detection context the common use of neural models is in form of auto-encoders. Through the use of auto-encoders the true anomality is proxied by reconstruction error. Auto-encoders often perform well but do not guarantee to perform as expected in all cases. A popular more direct way of modeling anomality distribution is through k-Nearest Neighbor models. Although kNN can perform better than auto-encoders in some cases, their applicability can be seriously impaired by their space and time complexity especially with high-dimensional large-scale data. The alternative we propose is to model the distribution imposed by kNN using neural networks. We show that such neural models are capable of achieving comparable accuracy to kNN while reducing computational complexity by orders of magnitude. The de-noising e ect of a neural model with limited number of neurons and layers is shown to lead to accuracy improvements in some cases. We evaluate the proposed idea against standard kNN and auto-encoders on a large set of benchmark data and show that in majority of cases it is possible to improve on accuracy or computational cost.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ACM SIGKDD 2018 Workshop
ISBN
978-1-4503-5552-0
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
ACM
Místo vydání
New York
Místo konání akce
London
Datum konání akce
20. 8. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—