Adaptive approach for density-approximating neural network models for anomaly detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00344025" target="_blank" >RIV/68407700:21340/21:00344025 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-57805-3_39" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-57805-3_39</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-57805-3_39" target="_blank" >10.1007/978-3-030-57805-3_39</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive approach for density-approximating neural network models for anomaly detection
Popis výsledku v původním jazyce
We propose an adaptive approach for density-approximating neural network models, the alternative use of neural models in anomaly detection. Instead of modeling anomaly indirectly through reconstruction error as is common in auto-encoders, we propose to use a neural model to efficiently approximate anomaly as inferred by k-Nearest Neighbor, which is popular due to its good performance as anomaly detector. We propose an adaptive approach to model the space of kNN inferred anomalies to obtain a neural model with comparable accuracy and considerably better time and space complexity. Moreover, the neural model can achieve even better accuracy in case of noisy data as it allows better control of over-fitting through control of its expressivity. The key contribution over our previous results is the adaptive coverage of kNN induced anomaly space through modified Parzen estimate, which then enables generating arbitrarily large training set for neural model training. We evaluate the proposed approach on real-world computer network traffic data provided by Cisco Systems.
Název v anglickém jazyce
Adaptive approach for density-approximating neural network models for anomaly detection
Popis výsledku anglicky
We propose an adaptive approach for density-approximating neural network models, the alternative use of neural models in anomaly detection. Instead of modeling anomaly indirectly through reconstruction error as is common in auto-encoders, we propose to use a neural model to efficiently approximate anomaly as inferred by k-Nearest Neighbor, which is popular due to its good performance as anomaly detector. We propose an adaptive approach to model the space of kNN inferred anomalies to obtain a neural model with comparable accuracy and considerably better time and space complexity. Moreover, the neural model can achieve even better accuracy in case of noisy data as it allows better control of over-fitting through control of its expressivity. The key contribution over our previous results is the adaptive coverage of kNN induced anomaly space through modified Parzen estimate, which then enables generating arbitrarily large training set for neural model training. We evaluate the proposed approach on real-world computer network traffic data provided by Cisco Systems.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing
ISBN
9783030578046
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
11
Strana od-do
415-425
Název nakladatele
Springer Nature
Místo vydání
—
Místo konání akce
Burgos
Datum konání akce
16. 9. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—