Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Efficient anomaly detection through surrogate neural networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00361258" target="_blank" >RIV/68407700:21340/22:00361258 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985556:_____/22:00577938

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s00521-022-07506-9" target="_blank" >https://doi.org/10.1007/s00521-022-07506-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00521-022-07506-9" target="_blank" >10.1007/s00521-022-07506-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Efficient anomaly detection through surrogate neural networks

  • Popis výsledku v původním jazyce

    Anomaly Detection can be viewed as an open problem despite the growing plethora of known anomaly detection techniques. The applicability of various anomaly detectors can vary depending on the application area and problem settings. Especially in the Big Data industrial setting, an important problem is inference speed, which may render even a highly accurate anomaly detector useless. In this paper, we propose to address this problem by training a surrogate neural network based on an auxiliary training set approximating the source anomaly detector output. We show that existing anomaly detectors can be approximated with high accuracy and with application-enabling inference speed. We compare our approach to a number of state-of-the-art algorithms: one class k-nearest-neighbors (kNN), local outlier factor, isolation forest, auto-encoder and two types of generative adversarial networks. We perform this comparison in the context of an important problem in cyber-security—the discovery of outlying (and thus suspicious) events in large-scale computer network traffic. Our results show that the proposed approach can successfully replace the most accurate but prohibitively slow kNN. Moreover, we observe that the surrogate neural network may even improve the kNN accuracy. Finally, we discuss various implications that the proposed approach can have while reducing the complexity of applied anomaly detection systems.

  • Název v anglickém jazyce

    Efficient anomaly detection through surrogate neural networks

  • Popis výsledku anglicky

    Anomaly Detection can be viewed as an open problem despite the growing plethora of known anomaly detection techniques. The applicability of various anomaly detectors can vary depending on the application area and problem settings. Especially in the Big Data industrial setting, an important problem is inference speed, which may render even a highly accurate anomaly detector useless. In this paper, we propose to address this problem by training a surrogate neural network based on an auxiliary training set approximating the source anomaly detector output. We show that existing anomaly detectors can be approximated with high accuracy and with application-enabling inference speed. We compare our approach to a number of state-of-the-art algorithms: one class k-nearest-neighbors (kNN), local outlier factor, isolation forest, auto-encoder and two types of generative adversarial networks. We perform this comparison in the context of an important problem in cyber-security—the discovery of outlying (and thus suspicious) events in large-scale computer network traffic. Our results show that the proposed approach can successfully replace the most accurate but prohibitively slow kNN. Moreover, we observe that the surrogate neural network may even improve the kNN accuracy. Finally, we discuss various implications that the proposed approach can have while reducing the complexity of applied anomaly detection systems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Computing and Applications

  • ISSN

    0941-0643

  • e-ISSN

    1433-3058

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    23

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

    20491-20505

  • Kód UT WoS článku

    000819338100001

  • EID výsledku v databázi Scopus

    2-s2.0-85133284278