Efficient anomaly detection through surrogate neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00361258" target="_blank" >RIV/68407700:21340/22:00361258 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/22:00577938
Výsledek na webu
<a href="https://doi.org/10.1007/s00521-022-07506-9" target="_blank" >https://doi.org/10.1007/s00521-022-07506-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00521-022-07506-9" target="_blank" >10.1007/s00521-022-07506-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient anomaly detection through surrogate neural networks
Popis výsledku v původním jazyce
Anomaly Detection can be viewed as an open problem despite the growing plethora of known anomaly detection techniques. The applicability of various anomaly detectors can vary depending on the application area and problem settings. Especially in the Big Data industrial setting, an important problem is inference speed, which may render even a highly accurate anomaly detector useless. In this paper, we propose to address this problem by training a surrogate neural network based on an auxiliary training set approximating the source anomaly detector output. We show that existing anomaly detectors can be approximated with high accuracy and with application-enabling inference speed. We compare our approach to a number of state-of-the-art algorithms: one class k-nearest-neighbors (kNN), local outlier factor, isolation forest, auto-encoder and two types of generative adversarial networks. We perform this comparison in the context of an important problem in cyber-security—the discovery of outlying (and thus suspicious) events in large-scale computer network traffic. Our results show that the proposed approach can successfully replace the most accurate but prohibitively slow kNN. Moreover, we observe that the surrogate neural network may even improve the kNN accuracy. Finally, we discuss various implications that the proposed approach can have while reducing the complexity of applied anomaly detection systems.
Název v anglickém jazyce
Efficient anomaly detection through surrogate neural networks
Popis výsledku anglicky
Anomaly Detection can be viewed as an open problem despite the growing plethora of known anomaly detection techniques. The applicability of various anomaly detectors can vary depending on the application area and problem settings. Especially in the Big Data industrial setting, an important problem is inference speed, which may render even a highly accurate anomaly detector useless. In this paper, we propose to address this problem by training a surrogate neural network based on an auxiliary training set approximating the source anomaly detector output. We show that existing anomaly detectors can be approximated with high accuracy and with application-enabling inference speed. We compare our approach to a number of state-of-the-art algorithms: one class k-nearest-neighbors (kNN), local outlier factor, isolation forest, auto-encoder and two types of generative adversarial networks. We perform this comparison in the context of an important problem in cyber-security—the discovery of outlying (and thus suspicious) events in large-scale computer network traffic. Our results show that the proposed approach can successfully replace the most accurate but prohibitively slow kNN. Moreover, we observe that the surrogate neural network may even improve the kNN accuracy. Finally, we discuss various implications that the proposed approach can have while reducing the complexity of applied anomaly detection systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Computing and Applications
ISSN
0941-0643
e-ISSN
1433-3058
Svazek periodika
34
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
20491-20505
Kód UT WoS článku
000819338100001
EID výsledku v databázi Scopus
2-s2.0-85133284278