Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Time-efficient Fourier domain evaluation of pharmacokinetic model in dynamic contrast-enhanced magnetic resonance imaging

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00490728" target="_blank" >RIV/67985556:_____/19:00490728 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68081731:_____/19:00490728

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-981-10-9035-6_143" target="_blank" >http://dx.doi.org/10.1007/978-981-10-9035-6_143</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-10-9035-6_143" target="_blank" >10.1007/978-981-10-9035-6_143</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Time-efficient Fourier domain evaluation of pharmacokinetic model in dynamic contrast-enhanced magnetic resonance imaging

  • Popis výsledku v původním jazyce

    Dynamic contrast-enhanced magnetic resonance imaging obtains information about tissue perfusion and permeability. Following the administration of a contrast agent, concentration-time curves measured in each voxel are fitted by a pharmacokinetic model formulated as a time-domain convolution of an arterial input function (AIF) and an impulse residue function (IRF). Since the measurement window contains hundreds of time samples, the discrete convolution is demanding, even when it is performed via discrete Fourier transform (DFT). Additionally, its discretization causes convergence complications in the curve fitting and it is not applicable to functions without a closed-form expression in the time domain, e.g. tissue homogeneity model IRF. Both issues can be solved by formulating the functions in a closed form in the Fourier domain. In the Fourier domain, the model transforms to multiplication of IRF and AIF, followed by the inverse DFT. To avoid time-domain aliasing, the number of samples in the Fourier domain must be higher than the sum of supports of the functions in the time domain. If the functions are slowly decaying exponentials, the support is theoretically infinite, which dramatically reduces the computational performance. In this contribution, we propose a modification of IRF in the Fourier domain to consider the measurement window. Our solution reduces the required number of samples to three times the measurement window compared to dozens needed without the modification and reduces the number of DFTs. This provides faster evaluation of the pharmacokinetic model and its derivatives for each voxel in each iteration of the curve fitting.

  • Název v anglickém jazyce

    Time-efficient Fourier domain evaluation of pharmacokinetic model in dynamic contrast-enhanced magnetic resonance imaging

  • Popis výsledku anglicky

    Dynamic contrast-enhanced magnetic resonance imaging obtains information about tissue perfusion and permeability. Following the administration of a contrast agent, concentration-time curves measured in each voxel are fitted by a pharmacokinetic model formulated as a time-domain convolution of an arterial input function (AIF) and an impulse residue function (IRF). Since the measurement window contains hundreds of time samples, the discrete convolution is demanding, even when it is performed via discrete Fourier transform (DFT). Additionally, its discretization causes convergence complications in the curve fitting and it is not applicable to functions without a closed-form expression in the time domain, e.g. tissue homogeneity model IRF. Both issues can be solved by formulating the functions in a closed form in the Fourier domain. In the Fourier domain, the model transforms to multiplication of IRF and AIF, followed by the inverse DFT. To avoid time-domain aliasing, the number of samples in the Fourier domain must be higher than the sum of supports of the functions in the time domain. If the functions are slowly decaying exponentials, the support is theoretically infinite, which dramatically reduces the computational performance. In this contribution, we propose a modification of IRF in the Fourier domain to consider the measurement window. Our solution reduces the required number of samples to three times the measurement window compared to dozens needed without the modification and reduces the number of DFTs. This provides faster evaluation of the pharmacokinetic model and its derivatives for each voxel in each iteration of the curve fitting.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-13830S" target="_blank" >GA16-13830S: Perfuzní zobrazování v magnetické rezonanci pomocí komprimovaného snímání</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    IFMBE Proceedings, Volume 68, Issue 1

  • ISBN

    978-981-10-9034-9

  • ISSN

    1680-0737

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    777-781

  • Název nakladatele

    Springer

  • Místo vydání

    Singapore

  • Místo konání akce

    Praha

  • Datum konání akce

    3. 6. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000450908300143