Simulated maximum likelihood estimation of agent-based models in economics and finance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00510031" target="_blank" >RIV/67985556:_____/19:00510031 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11230/19:10407391
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-981-13-8319-9_10" target="_blank" >http://dx.doi.org/10.1007/978-981-13-8319-9_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-13-8319-9_10" target="_blank" >10.1007/978-981-13-8319-9_10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simulated maximum likelihood estimation of agent-based models in economics and finance
Popis výsledku v původním jazyce
This chapter presents a general simulation-based framework for estimation of agent-based models in economics and finance based on kernel methods. After discussing the distinguishing features between empirical estimation and calibration of economic models, the simulated maximum likelihood estimator is validated for utilization in agent-based econometrics. As the main advantage, the method allows for estimation of nonlinear models for which the analytical representation of the objective function does not exist. We test the properties and performance of the estimator in combination with the seminal Brock and Hommes (J Econ Dyn Control 22:1235–1274, 1998) asset pricing model, where the dynamics are governed by switching of agents between trading strategies based on the discrete choice approach. We also provide links to how the estimation method can be extended to multivariate macroeconomic optimization problems. Using simulation analysis, we show that the estimator consistently recovers the pseudo-true parameters with high estimation precision. We further study the impact of agents' memory on the estimation performance and show that while memory generally deteriorates the precision, the main properties of the estimator remain unaffected.
Název v anglickém jazyce
Simulated maximum likelihood estimation of agent-based models in economics and finance
Popis výsledku anglicky
This chapter presents a general simulation-based framework for estimation of agent-based models in economics and finance based on kernel methods. After discussing the distinguishing features between empirical estimation and calibration of economic models, the simulated maximum likelihood estimator is validated for utilization in agent-based econometrics. As the main advantage, the method allows for estimation of nonlinear models for which the analytical representation of the objective function does not exist. We test the properties and performance of the estimator in combination with the seminal Brock and Hommes (J Econ Dyn Control 22:1235–1274, 1998) asset pricing model, where the dynamics are governed by switching of agents between trading strategies based on the discrete choice approach. We also provide links to how the estimation method can be extended to multivariate macroeconomic optimization problems. Using simulation analysis, we show that the estimator consistently recovers the pseudo-true parameters with high estimation precision. We further study the impact of agents' memory on the estimation performance and show that while memory generally deteriorates the precision, the main properties of the estimator remain unaffected.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-12386Y" target="_blank" >GJ17-12386Y: Multifraktální analýza ve financích: Extrémní události, řízení rizika a portfolia, a komplexita trhů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Network Theory and Agent-Based Modeling in Economics and Finance
ISBN
978-981-13-8318-2
Počet stran výsledku
24
Strana od-do
203-226
Počet stran knihy
458
Název nakladatele
Springer
Místo vydání
Singapore
Kód UT WoS kapitoly
—