Second Order Optimality in Markov and Semi-Markov Decision Processes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00517875" target="_blank" >RIV/67985556:_____/19:00517875 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Second Order Optimality in Markov and Semi-Markov Decision Processes
Popis výsledku v původním jazyce
Semi-Markov decision processes can be considered as an extension of discrete- and continuous-time Markov reward models. Unfortunately, traditional optimality criteria as long-run average reward per time may be quite insufficient to characterize the problem from the point of a decision maker. To this end it may be preferable if not necessary to select more sophisticated criteria that also reflect variability-risk features of the problem. Perhaps the best known approaches stem from the classical work of Markowitz on mean-variance selection rules, i.e. we optimize the weighted sum of average or total reward and its variance. Such approach has been already studied for very special classes of semi-Markov decision processes, in particular, for Markov decision processes in discrete - and continuous-time setting. In this note these approaches are summarized and possible extensions to the wider class of semi-Markov decision processes is discussed. Attention is mostly restricted to uncontrolled models in which the chain is aperiodic and contains a single class of recurrent states. Considering finite time horizons, explicit formulas for the first and second moments of total reward as well as for the corresponding variance are produced.
Název v anglickém jazyce
Second Order Optimality in Markov and Semi-Markov Decision Processes
Popis výsledku anglicky
Semi-Markov decision processes can be considered as an extension of discrete- and continuous-time Markov reward models. Unfortunately, traditional optimality criteria as long-run average reward per time may be quite insufficient to characterize the problem from the point of a decision maker. To this end it may be preferable if not necessary to select more sophisticated criteria that also reflect variability-risk features of the problem. Perhaps the best known approaches stem from the classical work of Markowitz on mean-variance selection rules, i.e. we optimize the weighted sum of average or total reward and its variance. Such approach has been already studied for very special classes of semi-Markov decision processes, in particular, for Markov decision processes in discrete - and continuous-time setting. In this note these approaches are summarized and possible extensions to the wider class of semi-Markov decision processes is discussed. Attention is mostly restricted to uncontrolled models in which the chain is aperiodic and contains a single class of recurrent states. Considering finite time horizons, explicit formulas for the first and second moments of total reward as well as for the corresponding variance are produced.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-02739S" target="_blank" >GA18-02739S: Stochastická optimalizace v ekonomických procesech</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Conference Proceedings. 37th International Conference on Mathematical Methods in Economics 2019
ISBN
978-80-7394-760-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
338-343
Název nakladatele
University of South Bohemia in České Budějovice, Faculty of Economics
Místo vydání
České Budějovice
Místo konání akce
České Budějovice
Datum konání akce
11. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—