The Radius of Metric Subregularity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00517219" target="_blank" >RIV/67985556:_____/20:00517219 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11228-019-00523-2" target="_blank" >https://link.springer.com/article/10.1007/s11228-019-00523-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11228-019-00523-2" target="_blank" >10.1007/s11228-019-00523-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Radius of Metric Subregularity
Popis výsledku v původním jazyce
There is a basic paradigm, called here the radius of well-posedness, which quantifies the “distance” from a given well-posed problem to the set of ill-posed problems of the same kind. In variational analysis, well-posedness is often understood as a regularity property, which is usually employed to measure the effect of perturbations and approximations of a problem on its solutions. In this paper we focus on evaluating the radius of the property of metric subregularity which, in contrast to its siblings, metric regularity, strong regularity and strong subregularity, exhibits a more complicated behavior under various perturbations. We consider three kinds of perturbations: by Lipschitz continuous functions, by semismooth functions, and by smooth functions, obtaining different expressions/bounds for the radius of subregularity, which involve generalized derivatives of set-valued mappings. We also obtain different expressions when using either Frobenius or Euclidean norm to measure the radius. As an application, we evaluate the radius of subregularity of a general constraint system. Examples illustrate the theoretical findings.
Název v anglickém jazyce
The Radius of Metric Subregularity
Popis výsledku anglicky
There is a basic paradigm, called here the radius of well-posedness, which quantifies the “distance” from a given well-posed problem to the set of ill-posed problems of the same kind. In variational analysis, well-posedness is often understood as a regularity property, which is usually employed to measure the effect of perturbations and approximations of a problem on its solutions. In this paper we focus on evaluating the radius of the property of metric subregularity which, in contrast to its siblings, metric regularity, strong regularity and strong subregularity, exhibits a more complicated behavior under various perturbations. We consider three kinds of perturbations: by Lipschitz continuous functions, by semismooth functions, and by smooth functions, obtaining different expressions/bounds for the radius of subregularity, which involve generalized derivatives of set-valued mappings. We also obtain different expressions when using either Frobenius or Euclidean norm to measure the radius. As an application, we evaluate the radius of subregularity of a general constraint system. Examples illustrate the theoretical findings.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Set-Valued and Variational Analysis
ISSN
1877-0533
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
23
Strana od-do
451-473
Kód UT WoS článku
000554706900002
EID výsledku v databázi Scopus
2-s2.0-85075389144