Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

IMD2020: A Large-Scale Annotated Dataset Tailored for Detecting Manipulated Images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00524641" target="_blank" >RIV/67985556:_____/20:00524641 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/WACVW50321.2020.9096940" target="_blank" >http://dx.doi.org/10.1109/WACVW50321.2020.9096940</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/WACVW50321.2020.9096940" target="_blank" >10.1109/WACVW50321.2020.9096940</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    IMD2020: A Large-Scale Annotated Dataset Tailored for Detecting Manipulated Images

  • Popis výsledku v původním jazyce

    Witnessing impressive results of deep nets in a number of computer vision problems, the image forensic community has begun to utilize them in the challenging domain of detecting manipulated visual content. One of the obstacles to replicate the success of deep nets here is absence of diverse datasets tailored for training and testing of image forensic methods. Such datasets need to be designed to capture wide and complex types of systematic noise and intrinsic artifacts of images in order to avoid overfitting of learning methods to just a narrow set of camera types or types of manipulations. These artifacts are brought into visual content by various components of the image acquisition process as well as the manipulating process. In this paper, we introduce two novel datasets. First, we identified the majority of camera brands and models on the market, which resulted in 2,322 camera models. Then, we collected a dataset of 35,000 real images captured by these camera models. Moreover, we also created the same number of digitally manipulated images by using a large variety of core image manipulation methods as well we advanced ones such as GAN or Inpainting resulting in a dataset of 70,000 images. In addition to this dataset, we also created a dataset of 2,000 “real-life” (uncontrolled) manipulated images. They are made by unknown people and downloaded from Internet. The real versions of these images also have been found and are provided. We also manually created binary masks localizing the exact manipulated areas of these images. Both datasets are publicly available for the research community at http://staff.utia.cas.cz/novozada/db.

  • Název v anglickém jazyce

    IMD2020: A Large-Scale Annotated Dataset Tailored for Detecting Manipulated Images

  • Popis výsledku anglicky

    Witnessing impressive results of deep nets in a number of computer vision problems, the image forensic community has begun to utilize them in the challenging domain of detecting manipulated visual content. One of the obstacles to replicate the success of deep nets here is absence of diverse datasets tailored for training and testing of image forensic methods. Such datasets need to be designed to capture wide and complex types of systematic noise and intrinsic artifacts of images in order to avoid overfitting of learning methods to just a narrow set of camera types or types of manipulations. These artifacts are brought into visual content by various components of the image acquisition process as well as the manipulating process. In this paper, we introduce two novel datasets. First, we identified the majority of camera brands and models on the market, which resulted in 2,322 camera models. Then, we collected a dataset of 35,000 real images captured by these camera models. Moreover, we also created the same number of digitally manipulated images by using a large variety of core image manipulation methods as well we advanced ones such as GAN or Inpainting resulting in a dataset of 70,000 images. In addition to this dataset, we also created a dataset of 2,000 “real-life” (uncontrolled) manipulated images. They are made by unknown people and downloaded from Internet. The real versions of these images also have been found and are provided. We also manually created binary masks localizing the exact manipulated areas of these images. Both datasets are publicly available for the research community at http://staff.utia.cas.cz/novozada/db.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2020 IEEE Winter Applications of Computer Vision Workshops (WACVW)

  • ISBN

    978-1-7281-7162-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    71-80

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Snowmass Village, CO

  • Datum konání akce

    1. 3. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000587895300010