Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Extended IMD2020: a large‐scale annotated dataset tailored for detecting manipulated images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00541341" target="_blank" >RIV/67985556:_____/21:00541341 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9096940" target="_blank" >https://ieeexplore.ieee.org/document/9096940</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1049/bme2.12025" target="_blank" >10.1049/bme2.12025</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Extended IMD2020: a large‐scale annotated dataset tailored for detecting manipulated images

  • Popis výsledku v původním jazyce

    Image forensic datasets need to accommodate a complex diversity of systematic noise and intrinsic image artefacts to prevent any overfitting of learning methods to a small set of camera types or manipulation techniques. Such artefacts are created during the image acquisition as well as the manipulating process itself (e.g., noise due to sensors, interpolation artefacts, etc.). Here, the authors introduce three datasets. First, we identified the majority of camera models on the market. Then, we collected a dataset of 35,000 real images captured by these cameras. We also created the same number of digitally manipulated images. Additionally, we also collected a dataset of 2,000 ‘real‐life’ (uncontrolled) manipulated images. They are made by unknown people and downloaded from the Internet. The real versions of these images are also provided. We also manually created binary masks localising the exact manipulated areas of these images. Moreover, we captured a set of 2,759 real images formed by 32 unique cameras (19 different camera models) in a controlled way by ourselves. Here, the processing history of all images is guaranteed. This set includes categorised images of uniform areas as well as natural images that can be used effectively for analysis of the sensor noise.

  • Název v anglickém jazyce

    Extended IMD2020: a large‐scale annotated dataset tailored for detecting manipulated images

  • Popis výsledku anglicky

    Image forensic datasets need to accommodate a complex diversity of systematic noise and intrinsic image artefacts to prevent any overfitting of learning methods to a small set of camera types or manipulation techniques. Such artefacts are created during the image acquisition as well as the manipulating process itself (e.g., noise due to sensors, interpolation artefacts, etc.). Here, the authors introduce three datasets. First, we identified the majority of camera models on the market. Then, we collected a dataset of 35,000 real images captured by these cameras. We also created the same number of digitally manipulated images. Additionally, we also collected a dataset of 2,000 ‘real‐life’ (uncontrolled) manipulated images. They are made by unknown people and downloaded from the Internet. The real versions of these images are also provided. We also manually created binary masks localising the exact manipulated areas of these images. Moreover, we captured a set of 2,759 real images formed by 32 unique cameras (19 different camera models) in a controlled way by ourselves. Here, the processing history of all images is guaranteed. This set includes categorised images of uniform areas as well as natural images that can be used effectively for analysis of the sensor noise.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IET Biometrics

  • ISSN

    2047-4938

  • e-ISSN

    2047-4946

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    16

  • Strana od-do

    392-407

  • Kód UT WoS článku

    000631767900001

  • EID výsledku v databázi Scopus

    2-s2.0-85122093887