On Barrier and Modified Barrier Multigrid Methods for Three-Dimensional Topology Optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00532969" target="_blank" >RIV/67985556:_____/20:00532969 - isvavai.cz</a>
Výsledek na webu
<a href="https://epubs.siam.org/doi/abs/10.1137/19M1254490" target="_blank" >https://epubs.siam.org/doi/abs/10.1137/19M1254490</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/19M1254490" target="_blank" >10.1137/19M1254490</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Barrier and Modified Barrier Multigrid Methods for Three-Dimensional Topology Optimization
Popis výsledku v původním jazyce
One of the challenges encountered in optimization of mechanical structures, in particular in what is known as topology optimization, is the size of the problems, which can easily involve millions of variables. A basic example is the minimum compliance formulation of the variable thickness sheet (VTS) problem, which is equivalent to a convex problem. We propose to solve the VTS problem by the penalty-barrier multiplier (PBM) method, introduced by R. Polyak and later studied by Ben-Tal and Zibulevsky and others. The most computationally expensive part of the algorithm is the solution of linear systems arising from the Newton method used to minimize a generalized augmented Lagrangian. We use a special structure of the Hessian of this Lagrangian to reduce the size of the linear system and to convert it to a form suitable for a standard multigrid method. This converted system is solved approximately by a multigrid
Název v anglickém jazyce
On Barrier and Modified Barrier Multigrid Methods for Three-Dimensional Topology Optimization
Popis výsledku anglicky
One of the challenges encountered in optimization of mechanical structures, in particular in what is known as topology optimization, is the size of the problems, which can easily involve millions of variables. A basic example is the minimum compliance formulation of the variable thickness sheet (VTS) problem, which is equivalent to a convex problem. We propose to solve the VTS problem by the penalty-barrier multiplier (PBM) method, introduced by R. Polyak and later studied by Ben-Tal and Zibulevsky and others. The most computationally expensive part of the algorithm is the solution of linear systems arising from the Newton method used to minimize a generalized augmented Lagrangian. We use a special structure of the Hessian of this Lagrangian to reduce the size of the linear system and to convert it to a form suitable for a standard multigrid method. This converted system is solved approximately by a multigrid
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Scientific Computing
ISSN
1064-8275
e-ISSN
—
Svazek periodika
42
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
"A28"-"A53"
Kód UT WoS článku
000551241700029
EID výsledku v databázi Scopus
2-s2.0-85083763340