Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On Barrier and Modified Barrier Multigrid Methods for Three-Dimensional Topology Optimization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00532969" target="_blank" >RIV/67985556:_____/20:00532969 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://epubs.siam.org/doi/abs/10.1137/19M1254490" target="_blank" >https://epubs.siam.org/doi/abs/10.1137/19M1254490</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/19M1254490" target="_blank" >10.1137/19M1254490</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On Barrier and Modified Barrier Multigrid Methods for Three-Dimensional Topology Optimization

  • Popis výsledku v původním jazyce

    One of the challenges encountered in optimization of mechanical structures, in particular in what is known as topology optimization, is the size of the problems, which can easily involve millions of variables. A basic example is the minimum compliance formulation of the variable thickness sheet (VTS) problem, which is equivalent to a convex problem. We propose to solve the VTS problem by the penalty-barrier multiplier (PBM) method, introduced by R. Polyak and later studied by Ben-Tal and Zibulevsky and others. The most computationally expensive part of the algorithm is the solution of linear systems arising from the Newton method used to minimize a generalized augmented Lagrangian. We use a special structure of the Hessian of this Lagrangian to reduce the size of the linear system and to convert it to a form suitable for a standard multigrid method. This converted system is solved approximately by a multigrid

  • Název v anglickém jazyce

    On Barrier and Modified Barrier Multigrid Methods for Three-Dimensional Topology Optimization

  • Popis výsledku anglicky

    One of the challenges encountered in optimization of mechanical structures, in particular in what is known as topology optimization, is the size of the problems, which can easily involve millions of variables. A basic example is the minimum compliance formulation of the variable thickness sheet (VTS) problem, which is equivalent to a convex problem. We propose to solve the VTS problem by the penalty-barrier multiplier (PBM) method, introduced by R. Polyak and later studied by Ben-Tal and Zibulevsky and others. The most computationally expensive part of the algorithm is the solution of linear systems arising from the Newton method used to minimize a generalized augmented Lagrangian. We use a special structure of the Hessian of this Lagrangian to reduce the size of the linear system and to convert it to a form suitable for a standard multigrid method. This converted system is solved approximately by a multigrid

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Scientific Computing

  • ISSN

    1064-8275

  • e-ISSN

  • Svazek periodika

    42

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    26

  • Strana od-do

    "A28"-"A53"

  • Kód UT WoS článku

    000551241700029

  • EID výsledku v databázi Scopus

    2-s2.0-85083763340