Bayesian Networks for the Test Score Prediction: A Case Study on a Math Graduation Exam
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00545875" target="_blank" >RIV/67985556:_____/21:00545875 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61384399:31160/21:00057566
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-86772-0_19" target="_blank" >http://dx.doi.org/10.1007/978-3-030-86772-0_19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-86772-0_19" target="_blank" >10.1007/978-3-030-86772-0_19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bayesian Networks for the Test Score Prediction: A Case Study on a Math Graduation Exam
Popis výsledku v původním jazyce
In this paper we study the problem of student knowledge level estimation. We use probabilistic models learned from collected data to model the tested students. We propose and compare experimentally several different Bayesian network models for the score prediction of student’s knowledge. The proposed scoring algorithm provides not only the expected value of the total score but the whole probability distribution of the total score. This means that confidence intervals of predicted total score can be provided along the expected value. The key that enabled efficient computations with the studied models is a newly proposed inference algorithm based on the CP tensor decomposition, which is used for the computation of the score distribution. The proposed algorithm is two orders of magnitude faster than a state of the art method. We report results of experimental comparisons on a large dataset from the Czech National Graduation Exam in Mathematics. In this evaluation the best performing model is an IRT model with one continuous normally distributed skill variable related to all items by the graded response models. The second best is a multidimensional IRT model with an expert structure of items-skills relations and a covariance matrix for the skills. This model has a higher improvement with larger training sets and seems to be the model of choice if a sufficiently large training dataset is available.
Název v anglickém jazyce
Bayesian Networks for the Test Score Prediction: A Case Study on a Math Graduation Exam
Popis výsledku anglicky
In this paper we study the problem of student knowledge level estimation. We use probabilistic models learned from collected data to model the tested students. We propose and compare experimentally several different Bayesian network models for the score prediction of student’s knowledge. The proposed scoring algorithm provides not only the expected value of the total score but the whole probability distribution of the total score. This means that confidence intervals of predicted total score can be provided along the expected value. The key that enabled efficient computations with the studied models is a newly proposed inference algorithm based on the CP tensor decomposition, which is used for the computation of the score distribution. The proposed algorithm is two orders of magnitude faster than a state of the art method. We report results of experimental comparisons on a large dataset from the Czech National Graduation Exam in Mathematics. In this evaluation the best performing model is an IRT model with one continuous normally distributed skill variable related to all items by the graded response models. The second best is a multidimensional IRT model with an expert structure of items-skills relations and a covariance matrix for the skills. This model has a higher improvement with larger training sets and seems to be the model of choice if a sufficiently large training dataset is available.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-04579S" target="_blank" >GA19-04579S: Struktury podmíněné nezávislosti: metody polyedrální geometrie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2021.
ISBN
978-3-030-86771-3
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
13
Strana od-do
255-267
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Praha
Datum konání akce
21. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000711926000019