Frozen percolation on the binary tree is nonendogenous
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00546728" target="_blank" >RIV/67985556:_____/21:00546728 - isvavai.cz</a>
Výsledek na webu
<a href="https://projecteuclid.org/journals/annals-of-probability/volume-49/issue-5/Frozen-percolation-on-the-binary-tree-is-nonendogenous/10.1214/21-AOP1507.short" target="_blank" >https://projecteuclid.org/journals/annals-of-probability/volume-49/issue-5/Frozen-percolation-on-the-binary-tree-is-nonendogenous/10.1214/21-AOP1507.short</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1214/21-AOP1507" target="_blank" >10.1214/21-AOP1507</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Frozen percolation on the binary tree is nonendogenous
Popis výsledku v původním jazyce
In frozen percolation, id. uniformly distributed activation times are assigned to the edges of a graph. At its assigned time an edge opens provided neither of its end vertices is part of an infinite open cluster, in the opposite case it freezes. Aldous (Math. Proc. Cambridge Philos. Soc. 128 (2000) 465–477) showed that such a process can be constructed on the infinite 3-regular tree and asked whether the event that a given edge freezes is a measurable function of the activation times assigned to all edges. We give a negative answer to this question, or, using an equivalent formulation and terminology introduced by Aldous and Bandyopadhyay (Ann. Appl. Probab. 15 (2005) 1047–1110), we show that the recursive tree process associated with frozen percolation on the oriented binary tree is nonendogenous. An essential role in our proofs is played by a frozen percolation process on a continuous-time binary Galton–Watson tree that has nice scale invariant properties.
Název v anglickém jazyce
Frozen percolation on the binary tree is nonendogenous
Popis výsledku anglicky
In frozen percolation, id. uniformly distributed activation times are assigned to the edges of a graph. At its assigned time an edge opens provided neither of its end vertices is part of an infinite open cluster, in the opposite case it freezes. Aldous (Math. Proc. Cambridge Philos. Soc. 128 (2000) 465–477) showed that such a process can be constructed on the infinite 3-regular tree and asked whether the event that a given edge freezes is a measurable function of the activation times assigned to all edges. We give a negative answer to this question, or, using an equivalent formulation and terminology introduced by Aldous and Bandyopadhyay (Ann. Appl. Probab. 15 (2005) 1047–1110), we show that the recursive tree process associated with frozen percolation on the oriented binary tree is nonendogenous. An essential role in our proofs is played by a frozen percolation process on a continuous-time binary Galton–Watson tree that has nice scale invariant properties.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-07140S" target="_blank" >GA19-07140S: Stochastické evoluční rovnice a časoprostorové systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Probability
ISSN
0091-1798
e-ISSN
—
Svazek periodika
49
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
45
Strana od-do
2272-2316
Kód UT WoS článku
000700613800004
EID výsledku v databázi Scopus
2-s2.0-85117380337