A phase transition between endogeny and nonendogeny
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00563793" target="_blank" >RIV/67985556:_____/22:00563793 - isvavai.cz</a>
Výsledek na webu
<a href="https://dx.doi.org/10.1214/22-EJP872" target="_blank" >https://dx.doi.org/10.1214/22-EJP872</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1214/22-EJP872" target="_blank" >10.1214/22-EJP872</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A phase transition between endogeny and nonendogeny
Popis výsledku v původním jazyce
The Marked Binary Branching Tree (MBBT) is the family tree of a rate one binary branching process, on which points have been generated according to a rate one Poisson point process, with id. uniformly distributed activation times assigned to the points. In frozen percolation on the MBBT, initially, all points are closed, but as time progresses points can become either frozen or open. Points become open at their activation times provided they have not become frozen before. Open points connect the parts of the tree below and above it and one says that a point percolates if the tree above it is infinite. We consider a version of frozen percolation on the MBBT in which at times of the form θ^n, all points that percolate are frozen. The limiting model for θ → 1, in which points freeze as soon as they percolate, has been studied before by Ráth, Swart, and Terpai. We extend their results by showing that there exists a 0 < θ∗ < 1 such that the model is endogenous for θ ≤ θ∗ but not for θ > θ∗. This means that for θ ≤ θ∗, frozen percolation is a.s. determined by the MBBT but for θ∗ > θ one needs additional randomness to describe it.
Název v anglickém jazyce
A phase transition between endogeny and nonendogeny
Popis výsledku anglicky
The Marked Binary Branching Tree (MBBT) is the family tree of a rate one binary branching process, on which points have been generated according to a rate one Poisson point process, with id. uniformly distributed activation times assigned to the points. In frozen percolation on the MBBT, initially, all points are closed, but as time progresses points can become either frozen or open. Points become open at their activation times provided they have not become frozen before. Open points connect the parts of the tree below and above it and one says that a point percolates if the tree above it is infinite. We consider a version of frozen percolation on the MBBT in which at times of the form θ^n, all points that percolate are frozen. The limiting model for θ → 1, in which points freeze as soon as they percolate, has been studied before by Ráth, Swart, and Terpai. We extend their results by showing that there exists a 0 < θ∗ < 1 such that the model is endogenous for θ ≤ θ∗ but not for θ > θ∗. This means that for θ ≤ θ∗, frozen percolation is a.s. determined by the MBBT but for θ∗ > θ one needs additional randomness to describe it.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-08468S" target="_blank" >GA20-08468S: Limity interagujících stochastických modelů na velkých škálách</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronic Journal of Probability
ISSN
1083-6489
e-ISSN
1083-6489
Svazek periodika
27
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
43
Strana od-do
145
Kód UT WoS článku
000910864400005
EID výsledku v databázi Scopus
2-s2.0-85141487598