Strong tree properties, Kurepa trees, and guessing models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00581546" target="_blank" >RIV/67985840:_____/24:00581546 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11210/24:10477919
Výsledek na webu
<a href="https://doi.org/10.1007/s00605-023-01922-2" target="_blank" >https://doi.org/10.1007/s00605-023-01922-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00605-023-01922-2" target="_blank" >10.1007/s00605-023-01922-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Strong tree properties, Kurepa trees, and guessing models
Popis výsledku v původním jazyce
We investigate the generalized tree properties and guessing model properties introduced by Weiß and Viale, as well as natural weakenings thereof, studying the relationships among these properties and between these properties and other prominent combinatorial principles. We introduce a weakening of Viale and Weiß’s Guessing Model Property, which we call the Almost Guessing Property, and prove that it provides an alternate formulation of the slender tree property in the same way that the Guessing Model Property provides and alternate formulation of the ineffable slender tree property. We show that instances of the Almost Guessing Property have sufficient strength to imply, for example, failures of square or the nonexistence of weak Kurepa trees. We show that these instances of the Almost Guessing Property hold in the Mitchell model starting from a strongly compact cardinal and prove a number of other consistency results showing that certain implications between the principles under consideration are in general not reversible. In the process, we provide a new answer to a question of Viale by constructing a model in which, for all regular θ≥ ω2 , there are stationarily many ω2 -guessing models M∈Pω2H(θ) that are not ω1 -guessing models.
Název v anglickém jazyce
Strong tree properties, Kurepa trees, and guessing models
Popis výsledku anglicky
We investigate the generalized tree properties and guessing model properties introduced by Weiß and Viale, as well as natural weakenings thereof, studying the relationships among these properties and between these properties and other prominent combinatorial principles. We introduce a weakening of Viale and Weiß’s Guessing Model Property, which we call the Almost Guessing Property, and prove that it provides an alternate formulation of the slender tree property in the same way that the Guessing Model Property provides and alternate formulation of the ineffable slender tree property. We show that instances of the Almost Guessing Property have sufficient strength to imply, for example, failures of square or the nonexistence of weak Kurepa trees. We show that these instances of the Almost Guessing Property hold in the Mitchell model starting from a strongly compact cardinal and prove a number of other consistency results showing that certain implications between the principles under consideration are in general not reversible. In the process, we provide a new answer to a question of Viale by constructing a model in which, for all regular θ≥ ω2 , there are stationarily many ω2 -guessing models M∈Pω2H(θ) that are not ω1 -guessing models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Monatshefte für Mathematik
ISSN
0026-9255
e-ISSN
1436-5081
Svazek periodika
203
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
AT - Rakouská republika
Počet stran výsledku
38
Strana od-do
111-148
Kód UT WoS článku
001106477500001
EID výsledku v databázi Scopus
2-s2.0-85178303166