Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Indestructibility of some compactness principles over models of PFA

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00576355" target="_blank" >RIV/67985840:_____/24:00576355 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11210/24:10477924

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.apal.2023.103359" target="_blank" >https://doi.org/10.1016/j.apal.2023.103359</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apal.2023.103359" target="_blank" >10.1016/j.apal.2023.103359</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Indestructibility of some compactness principles over models of PFA

  • Popis výsledku v původním jazyce

    We show that PFA (Proper Forcing Axiom) implies that adding any number of Cohen subsets of ω will not add an ω2-Aronszajn tree or a weak ω1-Kurepa tree, and moreover no σ-centered forcing can add a weak ω1-Kurepa tree (a tree of height and size ω1 with at least ω2 cofinal branches). This partially answers an open problem whether ccc forcings can add ω2-Aronszajn trees or ω1-Kurepa trees (with ¬□ω in the latter case). We actually prove more: We show that a consequence of PFA, namely the guessing model principle, GMP, which is equivalent to the ineffable slender tree property, ISP, is preserved by adding any number of Cohen subsets of ω. And moreover, GMP implies that no σ-centered forcing can add a weak ω1-Kurepa tree (see Section 2.1 for definitions). For more generality, we study variations of the principle GMP at higher cardinals and the indestructibility consequences they entail, and as applications we answer a question of Mohammadpour about guessing models at weakly but not strongly inaccessible cardinals and show that there is a model in which there are no weak ℵω+1-Kurepa trees and no ℵω+2-Aronszajn trees.

  • Název v anglickém jazyce

    Indestructibility of some compactness principles over models of PFA

  • Popis výsledku anglicky

    We show that PFA (Proper Forcing Axiom) implies that adding any number of Cohen subsets of ω will not add an ω2-Aronszajn tree or a weak ω1-Kurepa tree, and moreover no σ-centered forcing can add a weak ω1-Kurepa tree (a tree of height and size ω1 with at least ω2 cofinal branches). This partially answers an open problem whether ccc forcings can add ω2-Aronszajn trees or ω1-Kurepa trees (with ¬□ω in the latter case). We actually prove more: We show that a consequence of PFA, namely the guessing model principle, GMP, which is equivalent to the ineffable slender tree property, ISP, is preserved by adding any number of Cohen subsets of ω. And moreover, GMP implies that no σ-centered forcing can add a weak ω1-Kurepa tree (see Section 2.1 for definitions). For more generality, we study variations of the principle GMP at higher cardinals and the indestructibility consequences they entail, and as applications we answer a question of Mohammadpour about guessing models at weakly but not strongly inaccessible cardinals and show that there is a model in which there are no weak ℵω+1-Kurepa trees and no ℵω+2-Aronszajn trees.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF19-29633L" target="_blank" >GF19-29633L: Kompaktnostní principy a kombinatorické vlastnosti</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Annals of Pure and Applied Logic

  • ISSN

    0168-0072

  • e-ISSN

    1873-2461

  • Svazek periodika

    175

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    17

  • Strana od-do

    103359

  • Kód UT WoS článku

    001078824100001

  • EID výsledku v databázi Scopus

    2-s2.0-85171791208