Bayesian Selective Transfer Learning for Patient-Specific Inference in Thyroid Radiotherapy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00549009" target="_blank" >RIV/67985556:_____/21:00549009 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ISSC52156.2021.9467862" target="_blank" >http://dx.doi.org/10.1109/ISSC52156.2021.9467862</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISSC52156.2021.9467862" target="_blank" >10.1109/ISSC52156.2021.9467862</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bayesian Selective Transfer Learning for Patient-Specific Inference in Thyroid Radiotherapy
Popis výsledku v původním jazyce
This paper outlines a selective transfer approach for Bayesian estimation of patient-specific levels of radioiodine activity in the thyroid during the treatment of differentiated thyroid carcinoma. The work addresses some limitations of previous approaches which involved generic, non-selective transfer of archival data. It is proposed that improvements in patient-specific inferences may be space-conditioned, probabilistic data predictor from the sub-population to the specific patient. In addition, the transfer times are chosen to complement the patient's own data. Currently the proposed method yields positive transfer, with stable performance improvements up to 34%. Although this is found to be 9% below the performance of the current state-of-the-art, the proposed method is significant in that it can be applied to other transfer learning applications where inhomogeneous parameter knowledge is available in the source feature space.achieved via transferring external population knowledge selectively. This involves matching the patient to a similar sub-population based on available metadata and formally transferring a feature-
Název v anglickém jazyce
Bayesian Selective Transfer Learning for Patient-Specific Inference in Thyroid Radiotherapy
Popis výsledku anglicky
This paper outlines a selective transfer approach for Bayesian estimation of patient-specific levels of radioiodine activity in the thyroid during the treatment of differentiated thyroid carcinoma. The work addresses some limitations of previous approaches which involved generic, non-selective transfer of archival data. It is proposed that improvements in patient-specific inferences may be space-conditioned, probabilistic data predictor from the sub-population to the specific patient. In addition, the transfer times are chosen to complement the patient's own data. Currently the proposed method yields positive transfer, with stable performance improvements up to 34%. Although this is found to be 9% below the performance of the current state-of-the-art, the proposed method is significant in that it can be applied to other transfer learning applications where inhomogeneous parameter knowledge is available in the source feature space.achieved via transferring external population knowledge selectively. This involves matching the patient to a similar sub-population based on available metadata and formally transferring a feature-
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-15970S" target="_blank" >GA18-15970S: Optimální zpracování externí stochastické znalosti vyjádřené pomocí pravděpodobnostních distribucí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 32nd Irish Signals and Systems Conference (ISSC) 2021
ISBN
978-1-6654-3429-4
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
9467862
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Athlone
Datum konání akce
10. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—