Saturated models of first-order many-valued logics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00537231" target="_blank" >RIV/67985556:_____/22:00537231 - isvavai.cz</a>
Výsledek na webu
<a href="https://academic.oup.com/jigpal/article-abstract/30/1/1/5879257?redirectedFrom=fulltext" target="_blank" >https://academic.oup.com/jigpal/article-abstract/30/1/1/5879257?redirectedFrom=fulltext</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/jigpal/jzaa027" target="_blank" >10.1093/jigpal/jzaa027</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Saturated models of first-order many-valued logics
Popis výsledku v původním jazyce
This paper is devoted to the problem of existence of saturated models for first-order many-valued logics. We consider a general notion of type as pairs of sets of formulas in one free variable that express properties that an element of a model should, respectively, satisfy and falsify. By means of an elementary chains construction, we prove that each model can be elementarily extended to a κ-saturated model, i.e. a model where as many types as possible are realized. In order to prove this theorem we obtain, as by-products, some results on tableaux (understood as pairs of sets of formulas) and their consistency and satisfiability and a generalization of the Tarski-Vaught theorem on unions of elementary chains. Finally, we provide a structural characterization of κ-saturation in terms of the completion of a diagram representing a certain configuration of models and mappings.
Název v anglickém jazyce
Saturated models of first-order many-valued logics
Popis výsledku anglicky
This paper is devoted to the problem of existence of saturated models for first-order many-valued logics. We consider a general notion of type as pairs of sets of formulas in one free variable that express properties that an element of a model should, respectively, satisfy and falsify. By means of an elementary chains construction, we prove that each model can be elementarily extended to a κ-saturated model, i.e. a model where as many types as possible are realized. In order to prove this theorem we obtain, as by-products, some results on tableaux (understood as pairs of sets of formulas) and their consistency and satisfiability and a generalization of the Tarski-Vaught theorem on unions of elementary chains. Finally, we provide a structural characterization of κ-saturation in terms of the completion of a diagram representing a certain configuration of models and mappings.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-04630S" target="_blank" >GA17-04630S: Predikátové škálované logiky a jejich aplikace v informatice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Logic Journal of the IGPL
ISSN
1367-0751
e-ISSN
1368-9894
Svazek periodika
30
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
22
Strana od-do
1-20
Kód UT WoS článku
000744508900001
EID výsledku v databázi Scopus
2-s2.0-85050989071