Fermat's last theorem and Catalan's conjecture in weak exponential arithmetics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00481155" target="_blank" >RIV/67985840:_____/17:00481155 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/17:10369238 RIV/61384399:31140/17:00051179
Výsledek na webu
<a href="http://dx.doi.org/10.1002/malq.201500069" target="_blank" >http://dx.doi.org/10.1002/malq.201500069</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/malq.201500069" target="_blank" >10.1002/malq.201500069</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fermat's last theorem and Catalan's conjecture in weak exponential arithmetics
Popis výsledku v původním jazyce
We study Fermat's last theorem and Catalan's conjecture in the context of weak arithmetics with exponentiation. We deal with expansions math formula of models of arithmetical theories (in the language math formula) by a binary (partial or total) function e intended as an exponential. We provide a general construction of such expansions and prove that it is universal for the class of all exponentials e which satisfy a certain natural set of axioms math formula. We construct a model math formula and a substructure math formula with e total and math formula (Presburger arithmetic) such that in both math formula and math formula Fermat's last theorem for e is violated by cofinally many exponents n and (in all coordinates) cofinally many pairwise linearly independent triples math formula. On the other hand, under the assumption of ABC conjecture (in the standard model), we show that Catalan's conjecture for e is provable in math formula (even in a weaker theory) and thus holds in math formula and math formula. Finally, we also show that Fermat's last theorem for e is provable (again, under the assumption of ABC in math formula) in math formula“coprimality for e''.
Název v anglickém jazyce
Fermat's last theorem and Catalan's conjecture in weak exponential arithmetics
Popis výsledku anglicky
We study Fermat's last theorem and Catalan's conjecture in the context of weak arithmetics with exponentiation. We deal with expansions math formula of models of arithmetical theories (in the language math formula) by a binary (partial or total) function e intended as an exponential. We provide a general construction of such expansions and prove that it is universal for the class of all exponentials e which satisfy a certain natural set of axioms math formula. We construct a model math formula and a substructure math formula with e total and math formula (Presburger arithmetic) such that in both math formula and math formula Fermat's last theorem for e is violated by cofinally many exponents n and (in all coordinates) cofinally many pairwise linearly independent triples math formula. On the other hand, under the assumption of ABC conjecture (in the standard model), we show that Catalan's conjecture for e is provable in math formula (even in a weaker theory) and thus holds in math formula and math formula. Finally, we also show that Fermat's last theorem for e is provable (again, under the assumption of ABC in math formula) in math formula“coprimality for e''.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-04703Y" target="_blank" >GJ17-04703Y: Kvadratické formy a numerační systémy nad číselnými tělesy</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Logic Quarterly
ISSN
0942-5616
e-ISSN
—
Svazek periodika
63
Číslo periodika v rámci svazku
3-4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
162-174
Kód UT WoS článku
000414581800001
EID výsledku v databázi Scopus
2-s2.0-85033360515