Approximate Synchronization of Complex Network Consisting of Nodes With Minimum-Phase Zero Dynamics and Uncertainties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00556492" target="_blank" >RIV/67985556:_____/22:00556492 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9745155" target="_blank" >https://ieeexplore.ieee.org/document/9745155</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2022.3163310" target="_blank" >10.1109/ACCESS.2022.3163310</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Approximate Synchronization of Complex Network Consisting of Nodes With Minimum-Phase Zero Dynamics and Uncertainties
Popis výsledku v původním jazyce
A synchronization algorithm of nonlinear complex networks composed of nonlinear nodes is designed. The main idea is to apply the exact feedback linearization of every node first, then applying methods for synchronization of linear complex networks. The nodes need not admit full exact feedback linearization, however, they are supposed to be minimum-phase systems. To achieve the synchronization of the observable parts of the nodes, an algorithm based on the convex optimization (to be specific, on linear matrix inequalities) is proposed. Then, it is demonstrated that, using the minimum-phase assumption, the non-observable part of the nodes is synchronized as well. The algorithm for synchronization of the observable parts of the nodes can be used to design a control law that is capable of maintaining stability in presence of certain variations of the control gain. Uncertainties in the parameters are also taken into account. Two examples illustrate the control design.
Název v anglickém jazyce
Approximate Synchronization of Complex Network Consisting of Nodes With Minimum-Phase Zero Dynamics and Uncertainties
Popis výsledku anglicky
A synchronization algorithm of nonlinear complex networks composed of nonlinear nodes is designed. The main idea is to apply the exact feedback linearization of every node first, then applying methods for synchronization of linear complex networks. The nodes need not admit full exact feedback linearization, however, they are supposed to be minimum-phase systems. To achieve the synchronization of the observable parts of the nodes, an algorithm based on the convex optimization (to be specific, on linear matrix inequalities) is proposed. Then, it is demonstrated that, using the minimum-phase assumption, the non-observable part of the nodes is synchronized as well. The algorithm for synchronization of the observable parts of the nodes can be used to design a control law that is capable of maintaining stability in presence of certain variations of the control gain. Uncertainties in the parameters are also taken into account. Two examples illustrate the control design.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-05872S" target="_blank" >GA19-05872S: Synchronizace a decentralizované řízení složitých sítí</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
10
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
35352-35362
Kód UT WoS článku
000778880100001
EID výsledku v databázi Scopus
2-s2.0-85127469585