Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the rank of 2×2×2 probability tables

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00561326" target="_blank" >RIV/67985556:_____/22:00561326 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the rank of 2×2×2 probability tables

  • Popis výsledku v původním jazyce

    Bayesian networks for real-world problems typically satisfy the property of positive monotonicity (in the context of educational testing, it is commonly assumed that answering correctly a question A increases the probability of answering correctly another question B). In this paper, we focus on the study of relations between positive monotonic influences on three-variable patterns and a family of 2×2×2 tensors. In this study, we use the Kruskal polynomial, well-known in the psychometrics community, which is equivalent to Cayley’s hyperdeterminant (homogeneous polynomial of degree 4 in the 8 entries of a 2×2×2 tensor). It is known that when the Kruskal polynomial is positive, the rank of the tensor is two. We show that when a probability table associated with three random variables obeys the positive monotonicity property, its corresponding 2×2×2 tensor has rank two. Moreover, it can be decomposed using only nonnegative tensors, which can each be given a statistical interpretation. We study two concepts of monotonicity in sets of three random variables, strong monotonicity (any two variables have a positive influence on the third one), and weak monotonicity (just one pair of variables that have a positive influence on the third one), and we give an example to show they do not coincide. Furthermore, we proved that the strong monotonicity property implies that the tensor rank is at most two. We also performed experiments with real data to test the monotonicity properties. The real datasets were formed by information from the Czech high school final exam from the years 2016 to 2022. These datasets are representative since the sample size (number of students) for each year is very large (N > 10000) and information comes from students of all regions of the Czech Republic. In this datasets, we observed that almost all 2×2×2 tensors are monotone and all their corresponding 2×2×2 tensors have nonnegative decomposition.

  • Název v anglickém jazyce

    On the rank of 2×2×2 probability tables

  • Popis výsledku anglicky

    Bayesian networks for real-world problems typically satisfy the property of positive monotonicity (in the context of educational testing, it is commonly assumed that answering correctly a question A increases the probability of answering correctly another question B). In this paper, we focus on the study of relations between positive monotonic influences on three-variable patterns and a family of 2×2×2 tensors. In this study, we use the Kruskal polynomial, well-known in the psychometrics community, which is equivalent to Cayley’s hyperdeterminant (homogeneous polynomial of degree 4 in the 8 entries of a 2×2×2 tensor). It is known that when the Kruskal polynomial is positive, the rank of the tensor is two. We show that when a probability table associated with three random variables obeys the positive monotonicity property, its corresponding 2×2×2 tensor has rank two. Moreover, it can be decomposed using only nonnegative tensors, which can each be given a statistical interpretation. We study two concepts of monotonicity in sets of three random variables, strong monotonicity (any two variables have a positive influence on the third one), and weak monotonicity (just one pair of variables that have a positive influence on the third one), and we give an example to show they do not coincide. Furthermore, we proved that the strong monotonicity property implies that the tensor rank is at most two. We also performed experiments with real data to test the monotonicity properties. The real datasets were formed by information from the Czech high school final exam from the years 2016 to 2022. These datasets are representative since the sample size (number of students) for each year is very large (N > 10000) and information comes from students of all regions of the Czech Republic. In this datasets, we observed that almost all 2×2×2 tensors are monotone and all their corresponding 2×2×2 tensors have nonnegative decomposition.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of Machine Learning Research, Volume 186 : Proceedings of The 11th International Conference on Probabilistic Graphical Models

  • ISBN

  • ISSN

    2640-3498

  • e-ISSN

    2640-3498

  • Počet stran výsledku

    12

  • Strana od-do

    361-372

  • Název nakladatele

    PMLR

  • Místo vydání

    Almerı́a

  • Místo konání akce

    Almería

  • Datum konání akce

    5. 10. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku