On the rank of 2×2×2 probability tables
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00561326" target="_blank" >RIV/67985556:_____/22:00561326 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the rank of 2×2×2 probability tables
Popis výsledku v původním jazyce
Bayesian networks for real-world problems typically satisfy the property of positive monotonicity (in the context of educational testing, it is commonly assumed that answering correctly a question A increases the probability of answering correctly another question B). In this paper, we focus on the study of relations between positive monotonic influences on three-variable patterns and a family of 2×2×2 tensors. In this study, we use the Kruskal polynomial, well-known in the psychometrics community, which is equivalent to Cayley’s hyperdeterminant (homogeneous polynomial of degree 4 in the 8 entries of a 2×2×2 tensor). It is known that when the Kruskal polynomial is positive, the rank of the tensor is two. We show that when a probability table associated with three random variables obeys the positive monotonicity property, its corresponding 2×2×2 tensor has rank two. Moreover, it can be decomposed using only nonnegative tensors, which can each be given a statistical interpretation. We study two concepts of monotonicity in sets of three random variables, strong monotonicity (any two variables have a positive influence on the third one), and weak monotonicity (just one pair of variables that have a positive influence on the third one), and we give an example to show they do not coincide. Furthermore, we proved that the strong monotonicity property implies that the tensor rank is at most two. We also performed experiments with real data to test the monotonicity properties. The real datasets were formed by information from the Czech high school final exam from the years 2016 to 2022. These datasets are representative since the sample size (number of students) for each year is very large (N > 10000) and information comes from students of all regions of the Czech Republic. In this datasets, we observed that almost all 2×2×2 tensors are monotone and all their corresponding 2×2×2 tensors have nonnegative decomposition.
Název v anglickém jazyce
On the rank of 2×2×2 probability tables
Popis výsledku anglicky
Bayesian networks for real-world problems typically satisfy the property of positive monotonicity (in the context of educational testing, it is commonly assumed that answering correctly a question A increases the probability of answering correctly another question B). In this paper, we focus on the study of relations between positive monotonic influences on three-variable patterns and a family of 2×2×2 tensors. In this study, we use the Kruskal polynomial, well-known in the psychometrics community, which is equivalent to Cayley’s hyperdeterminant (homogeneous polynomial of degree 4 in the 8 entries of a 2×2×2 tensor). It is known that when the Kruskal polynomial is positive, the rank of the tensor is two. We show that when a probability table associated with three random variables obeys the positive monotonicity property, its corresponding 2×2×2 tensor has rank two. Moreover, it can be decomposed using only nonnegative tensors, which can each be given a statistical interpretation. We study two concepts of monotonicity in sets of three random variables, strong monotonicity (any two variables have a positive influence on the third one), and weak monotonicity (just one pair of variables that have a positive influence on the third one), and we give an example to show they do not coincide. Furthermore, we proved that the strong monotonicity property implies that the tensor rank is at most two. We also performed experiments with real data to test the monotonicity properties. The real datasets were formed by information from the Czech high school final exam from the years 2016 to 2022. These datasets are representative since the sample size (number of students) for each year is very large (N > 10000) and information comes from students of all regions of the Czech Republic. In this datasets, we observed that almost all 2×2×2 tensors are monotone and all their corresponding 2×2×2 tensors have nonnegative decomposition.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of Machine Learning Research, Volume 186 : Proceedings of The 11th International Conference on Probabilistic Graphical Models
ISBN
—
ISSN
2640-3498
e-ISSN
2640-3498
Počet stran výsledku
12
Strana od-do
361-372
Název nakladatele
PMLR
Místo vydání
Almerı́a
Místo konání akce
Almería
Datum konání akce
5. 10. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—