Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A constructive framework to define fusion functions with floating domains in arbitrary closed real intervals

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00564676" target="_blank" >RIV/67985556:_____/22:00564676 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0020025522008878?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025522008878?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ins.2022.08.007" target="_blank" >10.1016/j.ins.2022.08.007</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A constructive framework to define fusion functions with floating domains in arbitrary closed real intervals

  • Popis výsledku v původním jazyce

    Fusion functions and their most important subclass, aggregation functions, have been successfully applied in fuzzy modeling. However, there are practical problems, such as classification via Convolutional Neural Networks (CNNs), where the data to be aggregated are not modeling membership degrees in the unit interval. In this scenario, systems could benefit from the application of operators defined in domains different from [0,1], although, presenting similar behavior of some aggregation functions whose subclasses are currently defined only in the fuzzy context (e.g., overlap functions and t-norms). So, the main objective of this paper is to present a general framework to characterize classes of fusion functions with floating domains, called (a,b)-fusion functions, defined on any closed real interval [a,b], based on classes of core fusion functions defined on [0,1]. The fundamental aspect of this framework is that the properties of a core fusion function are preserved in the context of the analogous (a,b)-fusion function. Construction methods are presented, and some properties are studied. We also introduce a framework to define fusion functions in which the inputs come from an interval [a,b] but the output is mapped on a possibly different interval [c,d]. Finally, we present an illustrative example in image classification via CNNs.

  • Název v anglickém jazyce

    A constructive framework to define fusion functions with floating domains in arbitrary closed real intervals

  • Popis výsledku anglicky

    Fusion functions and their most important subclass, aggregation functions, have been successfully applied in fuzzy modeling. However, there are practical problems, such as classification via Convolutional Neural Networks (CNNs), where the data to be aggregated are not modeling membership degrees in the unit interval. In this scenario, systems could benefit from the application of operators defined in domains different from [0,1], although, presenting similar behavior of some aggregation functions whose subclasses are currently defined only in the fuzzy context (e.g., overlap functions and t-norms). So, the main objective of this paper is to present a general framework to characterize classes of fusion functions with floating domains, called (a,b)-fusion functions, defined on any closed real interval [a,b], based on classes of core fusion functions defined on [0,1]. The fundamental aspect of this framework is that the properties of a core fusion function are preserved in the context of the analogous (a,b)-fusion function. Construction methods are presented, and some properties are studied. We also introduce a framework to define fusion functions in which the inputs come from an interval [a,b] but the output is mapped on a possibly different interval [c,d]. Finally, we present an illustrative example in image classification via CNNs.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Information Sciences

  • ISSN

    0020-0255

  • e-ISSN

    1872-6291

  • Svazek periodika

    610

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    30

  • Strana od-do

    800-829

  • Kód UT WoS článku

    000860782400010

  • EID výsledku v databázi Scopus

    2-s2.0-85135958796