On impact of statistical estimates on precision of stochastic optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00566099" target="_blank" >RIV/67985556:_____/22:00566099 - isvavai.cz</a>
Výsledek na webu
<a href="https://hrcak.srce.hr/287939" target="_blank" >https://hrcak.srce.hr/287939</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17535/crorr.2022.0017" target="_blank" >10.17535/crorr.2022.0017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On impact of statistical estimates on precision of stochastic optimization
Popis výsledku v původním jazyce
This paper studies the consequences of imperfect information for the precision of stochastic optimization. In particular, it is assumed that the stochastic characteristics of an optimization problem depend on unknown parameters estimated from available data. First, a theoretical result is presented, showing that consistent parameters estimation leads to consistent optimization. Further, a type of the studied models is specified, it is assumed that the random variables present in the optimization problem are influenced by covariates. This influence is expressed via a parametric regression model, whose parameters have to be estimated and used instead of the unknown correct parameters values. The objective is then to explore, with the aid of simulations, the imprecision of the optimization based on these estimates. Several types of regression models are recalled, the variability of estimates and the related precision of sub-optimal solutions is studied in detail on an example dealing with optimal maintenance. The impact of random right-censoring on the deterioration of precision is studied as well.
Název v anglickém jazyce
On impact of statistical estimates on precision of stochastic optimization
Popis výsledku anglicky
This paper studies the consequences of imperfect information for the precision of stochastic optimization. In particular, it is assumed that the stochastic characteristics of an optimization problem depend on unknown parameters estimated from available data. First, a theoretical result is presented, showing that consistent parameters estimation leads to consistent optimization. Further, a type of the studied models is specified, it is assumed that the random variables present in the optimization problem are influenced by covariates. This influence is expressed via a parametric regression model, whose parameters have to be estimated and used instead of the unknown correct parameters values. The objective is then to explore, with the aid of simulations, the imprecision of the optimization based on these estimates. Several types of regression models are recalled, the variability of estimates and the related precision of sub-optimal solutions is studied in detail on an example dealing with optimal maintenance. The impact of random right-censoring on the deterioration of precision is studied as well.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Croatian Operational Research Review
ISSN
1848-0225
e-ISSN
1848-9931
Svazek periodika
13
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
HR - Chorvatská republika
Počet stran výsledku
11
Strana od-do
227-237
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85145910946