Learning the Structure of Bayesian Networks from Incomplete Data Using a Mixture Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00572588" target="_blank" >RIV/67985556:_____/23:00572588 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/23:00366181
Výsledek na webu
<a href="https://www.informatica.si/index.php/informatica/article/view/4497" target="_blank" >https://www.informatica.si/index.php/informatica/article/view/4497</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.31449/inf.v47i1.4497" target="_blank" >10.31449/inf.v47i1.4497</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning the Structure of Bayesian Networks from Incomplete Data Using a Mixture Model
Popis výsledku v původním jazyce
In this paper, we provide an approach to learning optimal Bayesian network (BN) structures from incomplete data based on the BIC score function using a mixture model to handle missing values. We have compared the proposed approach with other methods. Our experiments have been conducted on different models, some of them Belief Noisy-Or (BNO) ones. We have performed experiments using datasets with values missing completely at random having different missingness rates and data sizes. We have analyzed the significance of differences between the algorithm performance levels using the Wilcoxon test. The new approach typically learns additional edges in the case of Belief Noisy-or models. We have analyzed this issue using the Chi-square test of independence between the variables in the true models, this approach reveals that additional edges can be explained by strong dependence in generated data. An important property of our new method for learning BNs from incomplete data is that it can learn not only optimal general BNs but also specific Belief Noisy-Or models which is using in many applications such as medical application.
Název v anglickém jazyce
Learning the Structure of Bayesian Networks from Incomplete Data Using a Mixture Model
Popis výsledku anglicky
In this paper, we provide an approach to learning optimal Bayesian network (BN) structures from incomplete data based on the BIC score function using a mixture model to handle missing values. We have compared the proposed approach with other methods. Our experiments have been conducted on different models, some of them Belief Noisy-Or (BNO) ones. We have performed experiments using datasets with values missing completely at random having different missingness rates and data sizes. We have analyzed the significance of differences between the algorithm performance levels using the Wilcoxon test. The new approach typically learns additional edges in the case of Belief Noisy-or models. We have analyzed this issue using the Chi-square test of independence between the variables in the true models, this approach reveals that additional edges can be explained by strong dependence in generated data. An important property of our new method for learning BNs from incomplete data is that it can learn not only optimal general BNs but also specific Belief Noisy-Or models which is using in many applications such as medical application.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Computing and Informatics
ISSN
0350-5596
e-ISSN
—
Svazek periodika
47
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
SI - Slovinská republika
Počet stran výsledku
14
Strana od-do
83-96
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85158820349