Nonlinear and Linearized Models in Thermoviscoelasticity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00573354" target="_blank" >RIV/67985556:_____/23:00573354 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21110/23:00381422
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00205-022-01834-9" target="_blank" >https://link.springer.com/article/10.1007/s00205-022-01834-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00205-022-01834-9" target="_blank" >10.1007/s00205-022-01834-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nonlinear and Linearized Models in Thermoviscoelasticity
Popis výsledku v původním jazyce
We consider a quasistatic nonlinear model in thermoviscoelasticity at a finite-strain setting in the Kelvin–Voigt rheology, where both the elastic and viscous stress tensors comply with the principle of frame indifference under rotations. The force balance is formulated in the reference configuration by resorting to the concept of nonsimple materials, whereas the heat transfer equation is governed by the Fourier law in the deformed configurations. Weak solutions are obtained by means of a staggered in-time discretization where the deformation and the temperature are updated alternatingly. Our result refines a recent work by Mielke and Roubíček (Arch Ration Mech Anal 238:1–45, 2020) since our approximation does not require any regularization of the viscosity term. Afterwards, we focus on the case of deformations near the identity and small temperatures, and we show by a rigorous linearization procedure that weak solutions of the nonlinear system converge in a suitable sense to solutions of a system in linearized thermoviscoelasticity. The same property holds for time-discrete approximations and we provide a corresponding commutativity result.
Název v anglickém jazyce
Nonlinear and Linearized Models in Thermoviscoelasticity
Popis výsledku anglicky
We consider a quasistatic nonlinear model in thermoviscoelasticity at a finite-strain setting in the Kelvin–Voigt rheology, where both the elastic and viscous stress tensors comply with the principle of frame indifference under rotations. The force balance is formulated in the reference configuration by resorting to the concept of nonsimple materials, whereas the heat transfer equation is governed by the Fourier law in the deformed configurations. Weak solutions are obtained by means of a staggered in-time discretization where the deformation and the temperature are updated alternatingly. Our result refines a recent work by Mielke and Roubíček (Arch Ration Mech Anal 238:1–45, 2020) since our approximation does not require any regularization of the viscosity term. Afterwards, we focus on the case of deformations near the identity and small temperatures, and we show by a rigorous linearization procedure that weak solutions of the nonlinear system converge in a suitable sense to solutions of a system in linearized thermoviscoelasticity. The same property holds for time-discrete approximations and we provide a corresponding commutativity result.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF21-06569K" target="_blank" >GF21-06569K: Škály a tvary v termomechanice continua</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Archive for Rational Mechanics and Analysis
ISSN
0003-9527
e-ISSN
1432-0673
Svazek periodika
247
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
73
Strana od-do
5
Kód UT WoS článku
000908896900001
EID výsledku v databázi Scopus
2-s2.0-85145591440