Learned Lossy Image Compression for Volumetric Medical Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00578544" target="_blank" >RIV/67985556:_____/23:00578544 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learned Lossy Image Compression for Volumetric Medical Data
Popis výsledku v původním jazyce
This work addresses the problem of lossy compression of volumetric images consisting of individual slices such as those produced by CT scans and MRI machines in medical imaging. We propose an extension of a single-image lossy compression method with an autoregressive context module to a sequential encoding of the volumetric slices. In particular, we remove the intra-slice autoregressive relation and instead condition the entropy model of the latent on the previous slice in the sequence. This modification alleviates the typical disadvantages of autoregressive contexts and leads to a significant increase in performance compared to encoding each slice independently. We test the proposed method on a dataset of diverse CT scan images in a setting with an emphasis on high-fidelity reconstruction required in medical imaging and show that it compares favorably against several established state-of-the-art codecs in both performance and runtime.
Název v anglickém jazyce
Learned Lossy Image Compression for Volumetric Medical Data
Popis výsledku anglicky
This work addresses the problem of lossy compression of volumetric images consisting of individual slices such as those produced by CT scans and MRI machines in medical imaging. We propose an extension of a single-image lossy compression method with an autoregressive context module to a sequential encoding of the volumetric slices. In particular, we remove the intra-slice autoregressive relation and instead condition the entropy model of the latent on the previous slice in the sequence. This modification alleviates the typical disadvantages of autoregressive contexts and leads to a significant increase in performance compared to encoding each slice independently. We test the proposed method on a dataset of diverse CT scan images in a setting with an emphasis on high-fidelity reconstruction required in medical imaging and show that it compares favorably against several established state-of-the-art codecs in both performance and runtime.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 26th Computer Vision Winter Workshop (CVWW 2023)
ISBN
—
ISSN
1613-0073
e-ISSN
1613-0073
Počet stran výsledku
9
Strana od-do
—
Název nakladatele
CEUR-WS
Místo vydání
https://ceur-ws.org
Místo konání akce
Krems a.d. Donau
Datum konání akce
15. 2. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—