Konvergence metody GMRES pro třídiagonální Toeplitzovské matice
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F04%3A00103272" target="_blank" >RIV/67985807:_____/04:00103272 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Convergence of GMRES for Tridiagonal Toeplitz Matrices
Popis výsledku v původním jazyce
We analyze the residuals of GMRES, when the method is applied to tridiagonal Toeplitz matrices. We first derive formulas for the residuals as well as their norms when GMRES is applied to scaled Jordan blocks. This problem has been studied previously by Ipsen and Eiermann and Ernst, but we formulate and prove our results in a different way. Intuitively, when a scaled Jordan block is extended to a tridiagonal Toeplitz matrix by a superdiagonal of small modulus (compared to the modulus of the subdiagonal),the GMRES residual norms for both matrices and the same initial residual should be close to each other. We confirm and quantify this intuitive statement. We also demonstrate principal difficulties of any GMRES convergence analysis which is based on eigenvector expansion of the initial residual when the eigenvector matrix is ill-conditioned.
Název v anglickém jazyce
Convergence of GMRES for Tridiagonal Toeplitz Matrices
Popis výsledku anglicky
We analyze the residuals of GMRES, when the method is applied to tridiagonal Toeplitz matrices. We first derive formulas for the residuals as well as their norms when GMRES is applied to scaled Jordan blocks. This problem has been studied previously by Ipsen and Eiermann and Ernst, but we formulate and prove our results in a different way. Intuitively, when a scaled Jordan block is extended to a tridiagonal Toeplitz matrix by a superdiagonal of small modulus (compared to the modulus of the subdiagonal),the GMRES residual norms for both matrices and the same initial residual should be close to each other. We confirm and quantify this intuitive statement. We also demonstrate principal difficulties of any GMRES convergence analysis which is based on eigenvector expansion of the initial residual when the eigenvector matrix is ill-conditioned.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F02%2F0595" target="_blank" >GA201/02/0595: Matematická teorie iteračních procesů s aplikacemi</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2004
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Matrix Analysis and Applications
ISSN
0895-4798
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
233-251
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—