Combinatorial Development of Solid Catalytic Materials. Design of High Throughput Experiments, Data Analysis, Data Mining
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F09%3A00334675" target="_blank" >RIV/67985807:_____/09:00334675 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Combinatorial Development of Solid Catalytic Materials. Design of High Throughput Experiments, Data Analysis, Data Mining
Popis výsledku v původním jazyce
The book provides a comprehensive treatment of combinatorial development of heterogeneous catalysts. In particular, two computer-aided approaches that have played a key role in combinatorial catalysis and high-throughput experimentation during the last decade - evolutionary optimization and artificial neural networks - are described. The book describes evolutionary optimization in the context of methods of searching for optimal catalytic materials, including statistical design of experiments, and neuralnetworks in the context of data analysis. It is the first book that demystifies the attractiveness of artificial neural networks, explaining its rational fundamental - their universal approximation capability. At the same time, it shows the limitationsof that capability and describes two methods for how it can be improved. The book is also the first that presents automatic generating of problem-tailored genetic algorithms, and tuning evolutionary algorithms with neural networks.
Název v anglickém jazyce
Combinatorial Development of Solid Catalytic Materials. Design of High Throughput Experiments, Data Analysis, Data Mining
Popis výsledku anglicky
The book provides a comprehensive treatment of combinatorial development of heterogeneous catalysts. In particular, two computer-aided approaches that have played a key role in combinatorial catalysis and high-throughput experimentation during the last decade - evolutionary optimization and artificial neural networks - are described. The book describes evolutionary optimization in the context of methods of searching for optimal catalytic materials, including statistical design of experiments, and neuralnetworks in the context of data analysis. It is the first book that demystifies the attractiveness of artificial neural networks, explaining its rational fundamental - their universal approximation capability. At the same time, it shows the limitationsof that capability and describes two methods for how it can be improved. The book is also the first that presents automatic generating of problem-tailored genetic algorithms, and tuning evolutionary algorithms with neural networks.
Klasifikace
Druh
B - Odborná kniha
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
978-1-84816-343-0
Počet stran knihy
178
Název nakladatele
Imperial College Press
Místo vydání
London
Kód UT WoS knihy
—